This article is cited in 14 scientific papers (total in 14 papers)
Magnetism
A study of the critical properties of the Ising model on body-centered cubic lattice taking into account the interaction of next behind nearest neighbors
Abstract:
The replica Monte Carlo method has been used to investigate the critical behavior of a threedimensional antiferromagnetic Ising model on a body-centered cubic lattice, taking into account interactions of the adjacent behind neighbors. Investigations are carried out for the ratios of the values of exchange interactions behind the nearest and next nearest neighbors $k=J_2/J_1$ in the range of $k\in$ [0.0, 1.0] with the step $\Delta k$ = 0.1. In the framework of the theory of finite-dimensional scaling the static critical indices of heat capacity $\alpha$, susceptibility $\gamma$, of the order parameter $\beta$, correlation radius $\nu$, and also the Fisher index $\eta$ are calculated. It is shown that the universality class of the critical behavior of this model is kept in the interval of $k\in$ [0.0, 0.6]. It is established that a nonuniversal critical behavior is observed in the range $k\in$ [0.8, 1.0].
Citation:
A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. K. Badiev, Ya. K. Abuev, “A study of the critical properties of the Ising model on body-centered cubic lattice taking into account the interaction of next behind nearest neighbors”, Fizika Tverdogo Tela, 59:6 (2017), 1082–1088; Phys. Solid State, 59:6 (2017), 1103–1109
\Bibitem{MurRamKur17}
\by A.~K.~Murtazaev, M.~K.~Ramazanov, D.~R.~Kurbanova, M.~K.~Badiev, Ya.~K.~Abuev
\paper A study of the critical properties of the Ising model on body-centered cubic lattice taking into account the interaction of next behind nearest neighbors
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 6
\pages 1082--1088
\mathnet{http://mi.mathnet.ru/ftt9547}
\crossref{https://doi.org/10.21883/FTT.2017.06.44480.169}
\elib{https://elibrary.ru/item.asp?id=29405114}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 6
\pages 1103--1109
\crossref{https://doi.org/10.1134/S1063783417060166}
Linking options:
https://www.mathnet.ru/eng/ftt9547
https://www.mathnet.ru/eng/ftt/v59/i6/p1082
This publication is cited in the following 14 articles:
K. Sh Murtazaev, M.A. Magomedov, A.K. Murtazaev, M.K. Ramazanov, “Phase diagram of the antiferromagnetic Ising model on a body-centered cubic lattice with competing exchange interactions under a magnetic field”, Physica E: Low-dimensional Systems and Nanostructures, 148 (2023), 115646
K. S. Murtazaev, A. K. Murtazaev, M. K. Ramazanov, M. A. Magomedov, A. A. Murtazaeva, “Ising model on a body-centered cubic lattice with competing exchange interactions in strong magnetic fields”, Low Temperature Physics, 47:6 (2021), 478
Boris Kryzhanovsky, Leonid Litinskii, Vladislav Egorov, “Analytical Expressions for Ising Models on High Dimensional Lattices”, Entropy, 23:12 (2021), 1665
A. K. Murtazaev, M. K. Ramazanov, K. Sh. Murtazaev, M. A. Magomedov, M. K. Badiev, “Effect of magnetic field on the thermodynamic and magnetic properties of the antiferromagnetic Ising model on a body-centered cubic lattice”, Phys. Solid State, 62:2 (2020), 273–277
Pratyay Ghosh, Tobias Müller, Francesco Parisen Toldin, Johannes Richter, Rajesh Narayanan, Ronny Thomale, Johannes Reuther, Yasir Iqbal, “Quantum paramagnetism and helimagnetic orders in the Heisenberg model on the body centered cubic lattice”, Phys. Rev. B, 100:1 (2019)
A. K. Murtazaev, M. K. Ramazanov, M. K. Badiev, “Critical properties in the Ising model on a triangular lattice with the variable interlayer exchange interaction”, Phys. Solid State, 61:10 (2019), 1854–1859
A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, M. K. Badiev, M. K. Mazagaeva, “The study of phase transitions and critical phenomena of the Heisenberg model on a body-centered cubic lattice”, Phys. Solid State, 61:6 (2019), 1107–1112
A. K. Murtazaev, D. R. Kurbanova, M. K. Ramazanov, “Phase Transitions and Critical Properties of the Heisenberg Antiferromagnetic Model on a Body-Centered Cubic Lattice with Second Nearest Neighbor Interaction”, J. Exp. Theor. Phys., 129:5 (2019), 903
Akay K. Murtazaev, Magomedsheykh K. Ramazanov, Djuma R. Kurbanova, Magomed A. Magomedov, Kurban Sh. Murtazaev, “Phase diagrams and ground-state structures of the antiferromagnetic materials on a body-centered cubic lattice”, Materials Letters, 236 (2019), 669
A. O. Sorokin, “Weak first-order transition and pseudoscaling behavior in the universality class of the $O(N)$ Ising model”, Theoret. and Math. Phys., 200:2 (2019), 1193–1204
A. K. Murtazaev, M. A. Magomedov, M. K. Ramazanov, “Phase diagram and structure of the ground state of the antiferromagnetic Ising model on a body-centered cubic lattice”, JETP Letters, 107:4 (2018), 259–263
A. K. Murtazaev, M. K. Ramazanov, M. A. Magomedov, D. R. Kurbanova, “Studying thermodynamic properties of the Ising model on a body-centered cubic lattice with competing exchange interactions”, Phys. Solid State, 60:9 (2018), 1848–1852
A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. K. Badiev, “Phase transitions in the antiferromagnetic Heisenberg model on a body-centered cubic lattice with allowance for the next-nearest-neighbor interactions”, Phys. Solid State, 60:6 (2018), 1173–1176
A. K. Murtazaev, M. K. Ramazanov, “Critical properties of the antiferromagnetic layered Ising model on a cubic lattice with competing interactions”, Phys. Solid State, 59:9 (2017), 1822–1828