Abstract:
Introducing the filler nanoparticles into a polymer matrix is shown to not necessarily favor the formation of a true nanomaterial (nanocomposite). For this, a certain nanofiller structure has to be achieved in the polymer matrix. In polymer/organoclay nanocomposites it can be attained only by forming an exfoliated organoclay structure. A transition from micro-to nanocomposite under other similar conditions is accompanied by a drastic increase (by several times) in the elastic modulus.
Citation:
A. K. Mikitaev, G. V. Kozlov, “How to define a nanocomposite by the example of polymer/organoclay nanostructured composites”, Fizika Tverdogo Tela, 59:7 (2017), 1418–1421; Phys. Solid State, 59:7 (2017), 1446–1449
\Bibitem{MikKoz17}
\by A.~K.~Mikitaev, G.~V.~Kozlov
\paper How to define a nanocomposite by the example of polymer/organoclay nanostructured composites
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 7
\pages 1418--1421
\mathnet{http://mi.mathnet.ru/ftt9535}
\crossref{https://doi.org/10.21883/FTT.2017.07.44608.105}
\elib{https://elibrary.ru/item.asp?id=29772446}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 7
\pages 1446--1449
\crossref{https://doi.org/10.1134/S1063783417070149}
Linking options:
https://www.mathnet.ru/eng/ftt9535
https://www.mathnet.ru/eng/ftt/v59/i7/p1418
This publication is cited in the following 11 articles:
Julio E. Bruna, Cristina Muñoz‐Shugulí, Lisette Espinoza, Andrea Herrera, Francisco J. Rodríguez‐Mercadoz, Maria Angelica Ganga, Abel Guarda, Ma. José Galotto, “Poly(lactic acid) and copper‐modified montmorillonite nanocomposite films for antimicrobial food packaging”, J of Applied Polymer Sci, 2024
Raja Venkatesan, Sekar Surya, Sanjeevamuthu Suganthi, Muthumareeswaran Muthuramamoorthy, Saravanan Pandiaraj, Seong-Cheol Kim, “Biodegradable composites from poly(butylene adipate-co-terephthalate) with carbon nanoparticles: Preparation, characterization and performances”, Environmental Research, 235 (2023), 116634
G. V. Kozlov, I. V. Dolbin, “Percolation Model of the Formation of High-Modulus Polymer/Carbon Nanotube Nanocomposites”, Inorg. Mater. Appl. Res., 14:3 (2023), 769
G. V. Kozlov, I. V. Dolbin, “Fractal Treatment of Melt Viscosity of Polypropylene/Globular Carbon Nanocomposites”, J. Engin. Thermophys., 30:1 (2021), 163
L. B. Atlukhanova, G. V. Kozlov, I. V. Dolbin, “Reinforcement of Carbon Nanotube/Polydimethylsiloxane True Nanocomposite”, Russ Phys J, 62:10 (2020), 1801
L. B. Atlukhanova, G. V. Kozlov, I. V. Dolbin, “The Correlation between the Nanofiller Structure and the Properties of Polymer Nanocomposites: Fractal Model”, Inorg. Mater. Appl. Res., 11:1 (2020), 188
G. V. Kozlov, I. V. Dolbin, “The Effect of Uniaxial Extrusion on the Degree of Reinforcement of Nanocomposites Polyvinyl Chloride/Boron Nitride”, Inorg. Mater. Appl. Res., 10:3 (2019), 642
G. V. Kozlov, I. V. Dolbin, O. I. Koifman, “A Fractal Model of Reinforcement of Carbon Polymer–Nanotube Composites with Ultralow Concentrations of Nanofiller”, Dokl. Phys., 64:5 (2019), 225
G. V. Kozlov, I. V. Dolbin, “Structural interpretation of variation in properties of polymer/carbon nanotube nanocomposites near the nanofiller percolation threshold”, Tech. Phys., 64:10 (2019), 1501–1505
G. V. Kozlov, I. V. Dolbin, “The Role of Nanoparticle Network in 2D Nanofiller-Reinforced Polymer Nanocomposites”, Russ Phys J, 61:5 (2018), 974
G. V. Kozlov, S. A. Kuvshinova, I. V. Dolbin, O. I. Koifman, “Comparative Analysis of the Reinforcement of Polymers with 2D-Nanofillers: Organoclay and Boron Nitride”, Dokl. Phys., 63:3 (2018), 113