Abstract:
The Mössbauer studies on 57Fe nuclei in multiferroics BiFe1−xCrxO3 (x = 0.05, 0.10, and 0.20) have been performed at room temperature. The multiferroics BiFe1−xCrxO3 (x = 0.05, 0.10, and 0.20) with the rhombohedral R3c structure have been prepared by solid-state synthesis under high pressures. The effect of substitution of Cr cations for Fe cations on the spatial spin-modulated structure, and also hyperfine electrical and magnetic interactions of 57Fe nuclei has been studied. The substituted ferrites demonstrate an anharmonic modulated spin structure of cycloid type, in which iron atoms with different cation environments take part. The anharmonism parameter of the cycloid linearly increases from m = 0.10 at x = 0 to m = 0.78 ± 0.02 at x = 0.20. The constants of magnetic uniaxial anisotropy K u are estimated at room temperature: Ku≈ 0.36 × 106 erg/cm3 at x = 0 and Ku≈ 4.22 × 106 erg/cm3 at x = 0.20.
Citation:
V. S. Pokatilov, М. S. Rusakov, A. S. Sigov, A. A. Belik, “Mössbauer studies of multiferroics BiFe1−xCrxO3 (x = 0–0.20)”, Fizika Tverdogo Tela, 59:8 (2017), 1535–1541; Phys. Solid State, 59:8 (2017), 1558–1564
This publication is cited in the following 10 articles:
Chiara Coppi, Riccardo Cabassi, Francesco Mezzadri, Massimo Solzi, Francesco Cugini, Edmondo Gilioli, Davide Delmonte, “Cationic order-related magnetoresistivity and half-metallicity in bulk Pb2FeMoO6 grown by high pressure synthesis”, Journal of Crystal Growth, 632 (2024), 127629
V. S. Pokatilov, V. S. Rusakov, A. M. Gapochka, A. S. Sigov, “Spatial Spin-Modulated Structure of Bi1 – xSrxFeO3 – y (x = 0, 0.05, and 0.10) Multiferroics”, Kristallografiya, 68:5 (2023), 790
S. Vivek, A.S. Kumar, C.S. Chitra Lekha, N. Kalarikkal, A. Banerjee, S.S. Nair, “Exchange bias studies of CoFe2O4 coated BiFeO3 nanoparticles”, Journal of Alloys and Compounds, 968 (2023), 172066
G. P. Aleksandrova, A. S. Bogomyakov, A. N. Sapozhnikov, V. I. Ovcharenko, “Design of a bismuth ferrite nanocomposite in a polysaccharide matrix”, Russ Chem Bull, 71:7 (2022), 1453
Jiajun Mo, Puyue Xia, Qinghang Zhang, Haiwen Chen, Lebin Liu, Yanfang Xia, Min Liu, “Magnetism of
BiFe0.9Cr0.1O3
studied experimentally and with Monte Carlo simulations”, Phys. Rev. B, 105:9 (2022)
A. V. Sobolev, V. S. Rusakov, A. M. Gapochka, I. S. Glazkova, T. V. Gubaidulina, M. E. Matsnev, A. A. Belik, I. A. Presniakov, “Fe57
Mössbauer spectroscopy study of cycloidal spin arrangements and magnetic transitions in
BiFe1-xCoxO3”, Phys. Rev. B, 101:22 (2020)
V. T. Dovgii, N. N. Kulyk, A. V. Bodnaruk, D. D. Tatarchuk, “Magnetic and dielectric properties of solid solutions (1–x)BiFeO3–xYMnO3 multiferroics”, Low Temperature Physics, 45:10 (2019), 1092
V. I. Mikhaylov, V. T. Dovgii, A. I. Linnik, Z. F. Kravchenko, V. I. Kamenev, N. N. Kulik, A. V. Bodnaruk, Yu. A. Legenkii, D. D. Tatarchuk, N. V. Davydeiko, “Magnetic and dielectric properties of (1−x)BiFeO3–xYMnO3 multiferroics”, Tech. Phys. Lett., 45:4 (2019), 327–330
М. S. Rusakov, V. S. Pokatilov, A. S. Sigov, A. A. Belik, M. E. Matsnev, “Changes in the magnetic structure of multiferroic BiFe0.80Cr0.20O3 with temperature”, Phys. Solid State, 61:6 (2019), 1030–1036
A A Kamynin, M V Khakhlenkov, N A Tolstykh, A I Bocharov, S A Gridnev, “MgFe2O4phase effect on magnetic properties of BiFeO3in ceramic composites of (1-x) BiFeO3–xMgFe2O4”, J. Phys.: Conf. Ser., 993 (2018), 012003