Abstract:
The structural state in nanoscaled SiO2 is probed experimentally via X-ray diffraction and the simulation method. The aerosil nanoparticles and nanoparticles synthesized via the electron beam evaporation are compared. The nanoparticles for all samples are shown to be in the amorphous state. The amorphous state of a SiO2 unit lattice is simulated via the molecular dynamics. The full-profile refinement of parameters for a simulated SiO2 phase (the Rietveld method) has allowed the complete structural information to be established at varying the specific surface. The unit cell parameters, the spatial atomic distribution and the degree of cell node occupation are determined, as well. The specific surface area is shown to decrease in aerosil nanoparticles and to increase in tarkosil nanoparticles with the increasing binding energy of atoms in a cell.
Citation:
Yu. A. Abzaev, V. V. Syzrantsev, S. P. Bardakhanov, “Simulation of the structural state of amorphous phases in nanoscale SiO2 synthesized via different methods”, Fizika Tverdogo Tela, 59:9 (2017), 1850–1854; Phys. Solid State, 59:9 (2017), 1874–1878
\Bibitem{AbzSyzBar17}
\by Yu.~A.~Abzaev, V.~V.~Syzrantsev, S.~P.~Bardakhanov
\paper Simulation of the structural state of amorphous phases in nanoscale SiO$_{2}$ synthesized via different methods
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 9
\pages 1850--1854
\mathnet{http://mi.mathnet.ru/ftt9474}
\crossref{https://doi.org/10.21883/FTT.2017.09.44860.428}
\elib{https://elibrary.ru/item.asp?id=29973097}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 9
\pages 1874--1878
\crossref{https://doi.org/10.1134/S1063783417090025}
Linking options:
https://www.mathnet.ru/eng/ftt9474
https://www.mathnet.ru/eng/ftt/v59/i9/p1850
This publication is cited in the following 9 articles:
V. R. Gaponenko, S. P. Bardakhanov, D. Yu. Trufanov, “Temperature Influence on the Properties of Freely Poured Nano-Sized Inorganic Oxide Powders”, Glass Ceram, 80:9-10 (2024), 409
V.G. Ilves, M.G. Zuev, A.A. Vasin, P.M. Korusenko, S. Yu Sokovnin, M.V. Ulitko, A.S. Gerasimov, “Properties of an amorphous crystalline nanopowder Si–SiO2 produced by pulsed electron beam evaporation”, Materials Chemistry and Physics, 316 (2024), 129026
V. R. Gaponenko, S. P. Bardakhanov, D. Yu. Trufanov, “INFLUENCE OF TEMPERATURE ON THE PROPERTIES OF FREE LOADED INORGANIC OXIDE NANO POWDERS”, Steklo i Keramika, 2023, no. 22, 10
V. V. Shekhovtsov, N. K. Skripnikova, V. I. Vereshchagin, “Influence of Thermal Plasma Energy on Phase Transitions of Nanodispersed Silicon Dioxide”, Glass Phys Chem, 48:5 (2022), 410
A. V. Nomoev, V. V. Syzrantsev, S. P. Bardakhanov, N. A. Romanov, E. Ch. Khartaeva, V. R. Gaponenko, B. R. Radnaev, “Adhesion of Ethylene-Vinyl Acetate Copolymer Filled with Tarkosil Silica Nanoparticles”, J. Engin. Thermophys., 30:1 (2021), 40
Valentin V. Shekhovtsov, Nelly K. Skripnikova, Oleg G. Volokitin, “Phase Transitions in SiO2 Nanopowder Synthesized by Electric Arc Plasma”, IEEE Trans. Plasma Sci., 49:9 (2021), 2618
V V Syzrantsev, E A Paukstis, T V Larina, “Surface polymorphism of silica nanoparticles”, IOP Conf. Ser.: Mater. Sci. Eng., 1008:1 (2020), 012030
Akbayan Belgibayeva, Yuri Abzaev, Natalia Karakchieva, Rakhmetulla Erkasov, Victor Sachkov, Irina Kurzina, “The Structural and Phase State of the TiAl System Alloyed with Rare-Earth Metals of the Controlled Composition Synthesized by the “Hydride Technology””, Metals, 10:7 (2020), 859
Yu Abzaev, A Gnyrya, S Korobkov, K Gauss, A Boyarintsev, S Tomrachev, “Thermodynamic modeling of Portland cement without mineral additives”, J. Phys.: Conf. Ser., 1145 (2019), 012016