Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2017, Volume 59, Issue 9, Pages 1816–1827
DOI: https://doi.org/10.21883/FTT.2017.09.44857.069
(Mi ftt9471)
 

This article is cited in 9 scientific papers (total in 9 papers)

Low dimensional systems

The properties of Mn–CuFe2O4 spinel ferrite nanoparticles under various synthesis conditions

A. S. Kamzina, Е. Ranjith Kumarb, P. Ramadevic, C. Selvakumarb

a Ioffe Institute, St. Petersburg
b Department of Physics, Dr. NGP Institute of Technology, Coimbatore, Tamil Nadu, India
c Department of Electrical and Communication Engineering, Dr. N.G.P. Institute of Technology, Coimbatore, Tamil Nadu, India
Abstract: The structural, morphological, magnetic, dielectric, and gas analyzing properties are studied in CuFe2O4(Mn–CuFe2O4) substituted spinel ferrite nanoparticles synthesized via evaporation and automatic combustion. The obtained nanoparticles are established to possess a spherical shape. The smallest size of Mn–CuFe2O4 ( 9 nm) nanoparticles is achieved at using automatic combustion. X-ray diffraction and Mössbauer spectroscopy reveal that the crystal lattice constant and the Mn–CuFe2O4 nanoparticle size are larger at augmenting the annealing temperature from 600 to 900С. The dielectric permeability and losses of Mn–CuFe2O4 nanoparticles are studied at various synthesis conditions and temperatures of annealing. Various aspects of gas sensibility of synthesized Mn–CuFe2O4 nanoparticles are tested, as well. The maximum response to the presence of liquefied petroleum gas is 0.28 at the optimum working temperature of 300C for Mn–CuFe2O4 nanoparticles obtained via automatic combustion and it is 0.23 at 250C for deposited nanoparticles.
Received: 09.03.2017
English version:
Physics of the Solid State, 2017, Volume 59, Issue 9, Pages 1841–1851
DOI: https://doi.org/10.1134/S1063783417090128
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Kamzin, Е. Ranjith Kumar, P. Ramadevi, C. Selvakumar, “The properties of Mn–CuFe2O4 spinel ferrite nanoparticles under various synthesis conditions”, Fizika Tverdogo Tela, 59:9 (2017), 1816–1827; Phys. Solid State, 59:9 (2017), 1841–1851
Citation in format AMSBIB
\Bibitem{KamRanRam17}
\by A.~S.~Kamzin, Е.~Ranjith Kumar, P.~Ramadevi, C.~Selvakumar
\paper The properties of Mn--CuFe$_{2}$O$_{4}$ spinel ferrite nanoparticles under various synthesis conditions
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 9
\pages 1816--1827
\mathnet{http://mi.mathnet.ru/ftt9471}
\crossref{https://doi.org/10.21883/FTT.2017.09.44857.069}
\elib{https://elibrary.ru/item.asp?id=29973094}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 9
\pages 1841--1851
\crossref{https://doi.org/10.1134/S1063783417090128}
Linking options:
  • https://www.mathnet.ru/eng/ftt9471
  • https://www.mathnet.ru/eng/ftt/v59/i9/p1816
  • This publication is cited in the following 9 articles:
    1. N.I. Abu-Elsaad, S.A. Mazen, E. Ranjith Kumar, “Structural, vibrational and magnetic properties of heat treated CuFe2O4 nanoparticles prepared by two different synthesis routes”, Ceramics International, 50:2 (2024), 3693  crossref
    2. Asma S. Al-Wasidi, Ehab A. Abdelrahman, Khalil ur Rehman, Fawaz A. Saad, Alaa M. Munshi, “Efficient removal of crystal violet and acid red 88 dyes from aqueous environments using easily synthesized copper ferrite nanoparticles”, Sci Rep, 14:1 (2024)  crossref
    3. Run Zhang, Cong Qin, Hari Bala, Yan Wang, Jianliang Cao, “Recent Progress in Spinel Ferrite (MFe2O4) Chemiresistive Based Gas Sensors”, Nanomaterials, 13:15 (2023), 2188  crossref
    4. Prachi Jain, O.P. Thakur, S. Shankar Subramanian, “Structural, Dielectric and Impedance Phenomena in Copper Ferrite Nano Powders for Hydroelectric Cell Application”, MSF, 1099 (2023), 157  crossref
    5. S. Balamurugan, R. Ragasree, B. C. Brightlin, T. S. Gokul Raja, “Magnetic Properties of Mechano-Thermally Processed Nanocrystalline MgFe2O4 Spinel Materials”, J Clust Sci, 33:2 (2022), 547  crossref
    6. Manish Kumar, S. Shankar, Vinita Tuli, Srishti Mittal, Vaibhav Joshi, Mukund Kumar Jha, Gaurav Gupta, “Structural Analysis and Magnetoelectric Sensing in Cobalt Ferrite–BaTiO3 Composites”, Natl. Acad. Sci. Lett., 43:7 (2020), 677  crossref
    7. Jaume Calvo-de la Rosa, Mercè Segarra, “Optimization of the Synthesis of Copper Ferrite Nanoparticles by a Polymer-Assisted Sol–Gel Method”, ACS Omega, 4:19 (2019), 18289  crossref
    8. M. H. Abdellatif, A. A. Azab, “Fractal Growth of Ferrite Nanoparticles Prepared by Citrate-Gel Auto-Combustion Method”, Silicon, 10:5 (2018), 1991  crossref
    9. V. S. Kozlov, V. G. Semenov, K. G. Karateeva, V. Yu. Bairamukov, “A study of iron phthalocyanine pyrolyzate with Mössbauer spectroscopy and transmission electron microscopy”, Phys. Solid State, 60:5 (2018), 1035–1040  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025