Abstract:
The structure and electrical properties of BiFeO3 ceramics obtained by spark plasma sintering of a nanopowder are investigated. The nanopowder was synthesized by burning of an organic nitrate precursor. The ac conductivity was measured in a frequency range of 1 kHz–10 MHz in a temperature interval of 25–500∘C. It is established that the temperature conductivity coefficients above and below ∼350∘C significantly differ with both alternating and direct currents. The frequency dependence of the conductivity obeys the Jonscher power law σ∼ωs, where s< 1. The interpretation of this behavior is given in the framework of the model of correlated hops of charge carriers over potential barriers. It is assumed that the hopping mechanism is realized between Fe2+ and Fe3+ ions in ceramic grains. The role of oxygen vacancies in the conduction is also discussed.
Citation:
S. A. Sadykov, D. K. Palchaev, Zh. Kh. Murlieva, N. M.-R. Alikhanov, M. Kh. Rabadanov, S. Kh. Gadzhimagomedov, S. N. Kallaev, “AC conductivity of BiFeO3 ceramics obtained by spark plasma sintering of nanopowder”, Fizika Tverdogo Tela, 59:9 (2017), 1747–1753; Phys. Solid State, 59:9 (2017), 1771–1777
\Bibitem{SadPalMur17}
\by S.~A.~Sadykov, D.~K.~Palchaev, Zh.~Kh.~Murlieva, N.~M.-R.~Alikhanov, M.~Kh.~Rabadanov, S.~Kh.~Gadzhimagomedov, S.~N.~Kallaev
\paper AC conductivity of BiFeO$_{3}$ ceramics obtained by spark plasma sintering of nanopowder
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 9
\pages 1747--1753
\mathnet{http://mi.mathnet.ru/ftt9459}
\crossref{https://doi.org/10.21883/FTT.2017.09.44845.023}
\elib{https://elibrary.ru/item.asp?id=29973082}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 9
\pages 1771--1777
\crossref{https://doi.org/10.1134/S1063783417090268}
Linking options:
https://www.mathnet.ru/eng/ftt9459
https://www.mathnet.ru/eng/ftt/v59/i9/p1747
This publication is cited in the following 7 articles:
D. V. Kuzenko, “Frequency-Dependent Temperature Activation of Conductivity and Dielectric Constant of Magnetoelectric BiFeO3”, Bull. Russ. Acad. Sci. Phys., 88:S1 (2024), S13
Philipp Yu. Gorobtsov, Tatiana L. Simonenko, Nikolay P. Simonenko, Elizaveta P. Simonenko, Nikolay T. Kuznetsov, “Preparation of V2O5 Thin Film by Sol–Gel Technique and Pen Plotter Printing”, Colloids and Interfaces, 7:1 (2023), 20
A. E. Rabadanova, S. Kh. Gadzhimagomedov, N. M.-R. Alikhanov, M. V. Ilyichev, R. M. Emirov, F. F. Orudzhev, Sh. P. Faradzhev, P. M. Saipulaev, “Structure and dielectric properties of Bi1-xLaxFeO3 nanostructured ceramics”, Ferroelectrics, 576:1 (2021), 1
S.J.T. Vasconcelos, M.A.S. Silva, R.G.M. de Oliveira, M.H. Bezerra Junior, H.D. de Andrade, I.S. Queiroz Junior, C. Singh, A.S.B. Sombra, “High thermal stability and colossal permittivity of novel solid solution LaFeO3/CaTiO3”, Materials Chemistry and Physics, 257 (2021), 123239
Eva Gil‐González, Antonio Perejón, Pedro E. Sánchez‐Jiménez, Rishi Raj, Luis A. Pérez‐Maqueda, “Processing and properties of Bi0.98R0.02FeO3 (R = La, Sm, Y) ceramics flash sintered at 650°C in <5 s”, J Am Ceram Soc, 103:1 (2020), 136
S. A. Sadykov, S. N. Kallaev, N. M.-R. Alikhanov, K. Bormanis, A. Kalvane, “Dielectric properties and ac conductivities of Bi1-xSmxFeO3 ceramics”, Integrated Ferroelectrics, 196:1 (2019), 100
A. I. Klyndyuk, E. A. Chizhova, A. I. Poznyak, “Preparation and characterization of Bi4–xPrxTi3O12 solid solutions”, Chim.Tech.Acta, 4:4 (2017), 210