Abstract:
The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H)x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H)x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550∘C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.
Citation:
A. N. Lubnin, G. A. Dorofeev, R. M. Nikonova, V. V. Mukhgalin, V. I. Lad'yanov, “Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons”, Fizika Tverdogo Tela, 59:11 (2017), 2206–2217; Phys. Solid State, 59:11 (2017), 2226–2238
\Bibitem{LubDorNik17}
\by A.~N.~Lubnin, G.~A.~Dorofeev, R.~M.~Nikonova, V.~V.~Mukhgalin, V.~I.~Lad'yanov
\paper Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 11
\pages 2206--2217
\mathnet{http://mi.mathnet.ru/ftt9403}
\crossref{https://doi.org/10.21883/FTT.2017.11.45063.015}
\elib{https://elibrary.ru/item.asp?id=30554689}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 11
\pages 2226--2238
\crossref{https://doi.org/10.1134/S1063783417110191}
Linking options:
https://www.mathnet.ru/eng/ftt9403
https://www.mathnet.ru/eng/ftt/v59/i11/p2206
This publication is cited in the following 13 articles:
G. A. Pribytkov, A. V. Baranovskiy, V. V. Korzhova, I. A. Firsina, V. P. Krivopalov, “Effect of Ethanol on the Phase and Elemental Composition of Mechanically Activated Titaniumcarbon Powder Mixtures”, Russ Phys J, 67:8 (2024), 1100
A. N. Lubnin, V. I. Lad'yanov, B. E. Pushkarev, I. V. Sapegina, R. R. Faizullin, L. Kh. Baldaev, S. Yu. Treshchev, “Structure, Stacking Faults, and Electrochemical Behavior of α-Ta Obtained By Chemical Vapor Deposition”, J. Surf. Investig., 18:5 (2024), 1078
A. N. Lubnin, V. I. Lad'yanov, B. E. Pushkarev, I. V. Sapegina, R. R. Faizullin, L. Kh. Baldaev, S. Yu. Treschev, “Structure, stacking faults and electrochemical behavior of α-Ta prepared by chemical vapor deposition”, Poverhnostʹ. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ, 2024, no. 9, 80
V. V. Aksenova, O. M. Kanunnikova, V. I. Ladyanov, “Study of Heptane and Toluene Decomposition during High-Energy Processing in a Planetary Mill Together with Titanium Powder”, Russian Journal of Physical Chemistry, 97:4 (2023), 527
V. V. Aksenova, O. M. Kanunnikova, V. I. Ladyanov, “Study of Heptane and Toluene Decomposition during High-Energy Processing in a Planetary Mill Together with Titanium Powder”, Russ. J. Phys. Chem., 97:4 (2023), 687
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, “Exothermic Synthesis of Binary Solid Solutions Based on Hafnium and Zirconium Carbides”, Russ. J. Non-ferrous Metals, 64:4-6 (2023), 45
V. A. Shcherbakov, A. N. Gryadunov, I. E. Semenchuk, M. I. Alymov, “Ta4HfC5 Ceramic by Electro-Thermal Explosion under Pressure: Thermal and Electrical Parameters of the Process”, Int. J Self-Propag. High-Temp. Synth., 31:1 (2022), 1
V. A. Shcherbakov, A. N. Gryadunov, I. E. Semenchuk, A. E. Sytschev, M. I. Alymov, “Synthesis of Ultra-High-Temperature Ta4HfC5–HfB2 Composites by Electro-thermal Explosion under Pressure”, Int. J Self-Propag. High-Temp. Synth., 31:2 (2022), 57
V. A. Shcherbakov, A. N. Gryadunov, I. E. Semenchuk, D. Yu. Kovalev, A. E. Sychev, M. I. Alymov, “Synthesis of Ta4HfC5 Ceramics with a Submicron Structure by Electro-Thermal Explosion under Pressure”, Dokl Chem, 501:2 (2021), 259
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, “Exothermic synthesis of binary solid solutions based on hafnium and zirconium carbides”, Izv. VUZ. Poroshk. Met., 2021, no. 4, 30
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, “Ultra-High-Temperature Composite Hf4ZrC5 Produced by Electrothermal Explosion under Pressure”, Dokl Chem, 496:2 (2021), 38
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, “Ultra-Refractory Hf4ZrC5–(Hf,Zr)B2 Composites by Electrothermal Explosion under Pressure”, Int. J Self-Propag. High-Temp. Synth., 30:1 (2021), 36
A. N. Lubnin, G. A. Dorofeev, V. I. Lad'yanov, “X-ray Diffraction Study of Deformational Evolution of Stacking Faults in Nanocrystalline Metals”, Phys. Metals Metallogr., 121:11 (2020), 1087