Abstract:
The variation of the internal friction, Young’s modulus, and electrical resistivity of two grades of polycrystalline titanium (VT1-0 and Grade 4) in the area of low temperatures (100–300 K) as depending on the initial structure and subsequent severe plastic deformation converting the material into the submicrocrystalline structural state in relation to the grain size is studied. The maximum of the internal friction is detected in submicrocrystalline titanium, which is interpreted as a Bordoni peak. All the studied characteristics are sensitive indicators for a nonequilibrium state of the grain boundaries after the deformation. The effect of the initial structure of the metal on its properties after the severe deformation is revealed.
Citation:
B. K. Kardashev, K. V. Sapozhnikov, V. I. Betekhtin, A. G. Kadomtsev, M. V. Narykova, “Internal friction, Young's modulus, and electrical resistivity of submicrocrystalline titanium”, Fizika Tverdogo Tela, 59:12 (2017), 2358–2362; Phys. Solid State, 59:12 (2017), 2381–2386
\Bibitem{KarSapBet17}
\by B.~K.~Kardashev, K.~V.~Sapozhnikov, V.~I.~Betekhtin, A.~G.~Kadomtsev, M.~V.~Narykova
\paper Internal friction, Young's modulus, and electrical resistivity of submicrocrystalline titanium
\jour Fizika Tverdogo Tela
\yr 2017
\vol 59
\issue 12
\pages 2358--2362
\mathnet{http://mi.mathnet.ru/ftt9358}
\crossref{https://doi.org/10.21883/FTT.2017.12.45231.131}
\elib{https://elibrary.ru/item.asp?id=30685637}
\transl
\jour Phys. Solid State
\yr 2017
\vol 59
\issue 12
\pages 2381--2386
\crossref{https://doi.org/10.1134/S1063783417120204}
Linking options:
https://www.mathnet.ru/eng/ftt9358
https://www.mathnet.ru/eng/ftt/v59/i12/p2358
This publication is cited in the following 11 articles:
V. V. Mylnikov, E. A. Dmitriev, D. I. Shetulov, “Installation and test procedure for frequency stability under cyclic loading of metals and alloys”, Zavod. lab., Diagn. mater., 90:2 (2024), 73
Alena S. Gornakova, Boris B. Straumal, Alexander I. Tyurin, Natalia S. Afonikova, Askar R. Kilmametov, Alexander V. Druzhinin, Aleksey N. Nekrasov, Gregory S. Davdian, Luong V. Duong, “The Determining Influence of the Phase Composition on the Mechanical Properties of Titanium—Iron Alloys after High-Pressure Torsion”, Materials, 17:15 (2024), 3740
A.S. GORNAKOVA, S.I. PROKOFIEV, N.S. AFONIKOVA, A.I. TYURIN, A.V. KORNEVA, A.V. KILMAMETOV, B.B. STRAUMAL, “RADIAL DEPENDENCES OF THE PHASE COMPOSITION, NANOHARDNESS, AND YOUNG'S MODULUS FOR TI-2 WT”, FM, 4 (2024)
A. S. Gornakova, S. I. Prokofjev, N. S. Afonikova, A. I. Tyurin, A. R. Kilmametov, A. V. Korneva, B. B. Straumal, “Radial Dependences of the Phase Composition, Nanohardness, and Young's Modulus for Ti–2 wt”, Phys Mesomech, 27:6 (2024), 627
V. V. Mylnikov, E. A. Dmitriev, D. I. Shetulov, “Installation and Testing Methods for Frequency Stability under Cyclic Loading of Metals and Alloys”, Inorg Mater, 60:4 (2024), 494
D. I. Shetulov, V. V. Mylnikov, E. A. Dmitriev, “Titanium alloy fatigue strength and eigenfrequency stability”, Izv.VUZ. Tsvet. Met., 2023, no. 2, 74
V. V. Myl'nikov, E. A. Dmitriev, D. I. Shetulov, “Effect of Heat Treatment on Fatigue Strength and Frequency Stability of Tool Steel 6KhS”, Met Sci Heat Treat, 65:7-8 (2023), 415
V. V. Myl'nikov, E. A. Dmitriev, “A method for studying the frequency stability of materials during tests for multi-cycle fatigue of steel”, Izv. vysš. učebn. zaved., Čern. metall., 66:3 (2023), 367
R. Mahayri, S. Mercone, F. Giovannelli, K.-L. Tan, J.-M. Morelle, N. Jouini, F. Schoenstein, “Microstructure effects on thermal and electrical conductivities in the intermetallic compound Ag3Sn-based materials, sintered by SPS in view of die-attachment applications”, Eur. Phys. J. Spec. Top., 231:24 (2022), 4173
Tapabrata Maity, Konda Gokuldoss Prashanth, Özge Balcı, Grzegorz Cieślak, Maciej Spychalski, Tadeusz Kulik, Jürgen Eckert, “High‐entropy eutectic composites with high strength and low Young's modulus”, Mat Design & Process Comms, 3:5 (2021)
B. K. Kardashev, V. I. Betekhtin, M. V. Narykova, A. G. Kadomtsev, O. V. Amosova, “The effect of equal channel angular extrusion and hydrostatic pressure on the elastic and microplastic properties of a Cu–0.2 wt%Zr alloy”, Tech. Phys., 64:10 (2019), 1480–1483