Abstract:
The aspects of structure, dipole ordering, and ionic conductivity of the Na3Cr2(PO4)3 crystal with the four polymorphic phases (α, α′, β, and γ) have been investigated. The features of the α-Na3Cr2(PO4)3 crystal structure and its dipole ordering and relaxation polarization in the low-temperature α, and α′ phases have been refined. The occurrence of Na3Cr2(PO4)3 dipole ordering in the α and α′ phases and high ionic conductivity in the β- and γ phases is attributed to the structural changes in the rhombohedral {[Me2(PO4)3]3−}3∞ crystal frame upon phase transformations α→α′, α′→β, and β→γ. A model for explaining the dipole ordering and ionic conductivity phenomena in Na3Cr2(PO4)3 is proposed.
Citation:
A. S. Nogai, S. Yu. Stefanovich, A. A. Bush, D. E. Uskenbayev, А. А. Nogai, “Dipole ordering and ionic conductivity in NASICON-Type Na3Cr2(PO4)3 structures”, Fizika Tverdogo Tela, 60:1 (2018), 25–32; Phys. Solid State, 61:12 (2019), 23–30
\Bibitem{NogSteBus18}
\by A.~S.~Nogai, S.~Yu.~Stefanovich, A.~A.~Bush, D.~E.~Uskenbayev, А.~А.~Nogai
\paper Dipole ordering and ionic conductivity in NASICON-Type Na$_{3}$Cr$_{2}$(PO$_{4}$)$_{3}$ structures
\jour Fizika Tverdogo Tela
\yr 2018
\vol 60
\issue 1
\pages 25--32
\mathnet{http://mi.mathnet.ru/ftt9323}
\crossref{https://doi.org/10.21883/FTT.2018.01.45284.014}
\elib{https://elibrary.ru/item.asp?id=32737371}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 12
\pages 23--30
\crossref{https://doi.org/10.1134/S1063783418010146}
Linking options:
https://www.mathnet.ru/eng/ftt9323
https://www.mathnet.ru/eng/ftt/v60/i1/p25
This publication is cited in the following 7 articles:
Leila Miladi, Naoufel Ben Hamadi, Abderrazek Oueslati, Ahlem Guesmi, Fehmi Boufahja, Houcine Naili, “Structural and electrical properties of Li- and Na-Based chromium NASICON: Insights into ionic conductivity and dielectric behavior”, Inorganic Chemistry Communications, 2025, 114391
Ziliang Wang, Tara P. Mishra, Weihang Xie, Zeyu Deng, Gopalakrishnan Sai Gautam, Anthony K. Cheetham, Pieremanuele Canepa, “Kinetic Monte Carlo Simulations of Sodium Ion Transport in NaSICON Electrodes”, ACS Materials Lett., 5:9 (2023), 2499
Gustautas Snarskis, Jurgis Pilipavičius, Denis Gryaznov, Lina Mikoliu̅naitė, Linas Vilčiauskas, “Peculiarities of Phase Formation in Mn-Based Na SuperIonic Conductor (NaSICon) Systems: The Case of Na1+2xMnxTi2–x(PO4)3 (0.0 ≤ x ≤ 1.5)”, Chem. Mater., 33:21 (2021), 8394
A. S. Nogai, А. А. Nogai, S. Yu. Stefanovich, Zh. M. Solikhodzha, D. E. Uskenbayev, “Dipole ordering and the ionic conductivity in Na3Fe2(PO4)3-type NASICON-like structures”, Phys. Solid State, 62:8 (2020), 1370–1379
A. S. Nogai, А. А. Nogai, S. Yu. Stefanovich, Zh. M. Solikhodzha, D. E. Uskenbayev, “The dipole ordering and the ionic conductivity in the NASICON-like structures of the Na3Sc2(PO4)3 type”, Phys. Solid State, 61:11 (2019), 1985–1992
A. Chari, M. Dahbi, K. El Ouardi, B. Orayech, A. El Bouari, I. Saadoune, 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), 2019, 1
Hongcai Gao, Ieuan D. Seymour, Sen Xin, Leigang Xue, Graeme Henkelman, John B. Goodenough, “Na3MnZr(PO4)3: A High-Voltage Cathode for Sodium Batteries”, J. Am. Chem. Soc., 140:51 (2018), 18192