Abstract:
The processes of molecular relaxation in solid binary carbonate-sulfate systems, such as Li2CO3–Li2SO4, Na2CO3–Na2SO4, K2CO3–K2SO4, have been studied by Raman spectroscopy. It has been revealed that the relaxation time of CO2−3 anion vibration ν1(A) in a binary system is higher than in an individual carbonate. It is shown that an increase in the relaxation rate may be explained by the existence of an additional mechanism of the relaxation of vibrationally excited states of a carbonate anion. This mechanism is associated with the excitation of the vibration of another anion (SO2−4) and the “birth” of a lattice phonon. It has been established that the condition for the implementation of such a relaxation mechanism is that the difference between the frequencies of these vibrations must correspond to the region of a rather high density of phonon spectrum states.
Citation:
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, A. M. Amirov, “Relaxation of vibrationally excited states in solid binary carbonate-sulfate systems”, Fizika Tverdogo Tela, 60:2 (2018), 341–345; Phys. Solid State, 60:2 (2018), 347–351
\Bibitem{AliAkhKak18}
\by A.~R.~Aliev, I.~R.~Akhmedov, M.~G.~Kakagasanov, Z.~A.~Aliev, M.~M.~Gafurov, K.~Sh.~Rabadanov, A.~M.~Amirov
\paper Relaxation of vibrationally excited states in solid binary carbonate-sulfate systems
\jour Fizika Tverdogo Tela
\yr 2018
\vol 60
\issue 2
\pages 341--345
\mathnet{http://mi.mathnet.ru/ftt9309}
\crossref{https://doi.org/10.21883/FTT.2018.02.45390.140}
\elib{https://elibrary.ru/item.asp?id=32739784}
\transl
\jour Phys. Solid State
\yr 2018
\vol 60
\issue 2
\pages 347--351
\crossref{https://doi.org/10.1134/S1063783418020038}
Linking options:
https://www.mathnet.ru/eng/ftt9309
https://www.mathnet.ru/eng/ftt/v60/i2/p341
This publication is cited in the following 9 articles:
Mengmeng Wang, Quanyin Tan, Jiadong Yu, Dong Xia, Wei Zhang, Cong-Cong Zhang, Zhiyuan Zhang, Junxiong Wang, Kang Liu, Jinhui Li, “Pollution-free recycling of lead and sulfur from spent lead-acid batteries via a facile vacuum roasting route”, Green Energy and Resources, 1:1 (2023), 100002
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, “Pretransition Phenomena in the Vicinity of Structural Phase Transition in Crystalline Sodium Carbonate”, Crystallogr. Rep., 65:2 (2020), 285
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, “Pre-Transition Phenomena in the Temperature Range of Structural Phase Transitions in Perchlorate Crystals”, Russ. J. Phys. Chem., 94:7 (2020), 1363
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, “Pretransition phenomena near first-order phase transitions in ion-molecular crystals”, Phys. Solid State, 62:6 (2020), 998–1010
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, S. A. Akhmedov, “Pre-Transition Phenomena During Phase Transition in Potassium Carbonate”, Russ Phys J, 62:12 (2020), 2264
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, “Pretransition Phenomena in the Region of a Structural Phase Transition in Potassium Perchlorate”, J Struct Chem, 60:10 (2019), 1584
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, “Vibrational spectra of ion-molecular carbonate crystals in the pretransition region near structural phase transitions”, Optics and Spectroscopy, 127:3 (2019), 463–467
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, “Raman spectra of polycrystalline lithium, sodium and potassium sulfates in the pretransition temperature region below the structural phase transition”, Phys. Solid State, 61:8 (2019), 1464–1470
A. R. Aliev, M. M. Gafurov, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, “Structural phase transition peculiarities in ion-molecular perchlorate crystals”, Phys. Solid State, 60:6 (2018), 1203–1213