Abstract:
This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.
Citation:
I. Yu. Dolinskii, K. P. Katin, K. S. Grishakov, V. S. Prudkovskii, N. I. Kargin, M. M. Maslov, “Influence of mechanical stretching on adsorption properties of nitrogen-doped graphene”, Fizika Tverdogo Tela, 60:4 (2018), 816–820; Phys. Solid State, 60:4 (2018), 821–825
\Bibitem{DolKatGri18}
\by I.~Yu.~Dolinskii, K.~P.~Katin, K.~S.~Grishakov, V.~S.~Prudkovskii, N.~I.~Kargin, M.~M.~Maslov
\paper Influence of mechanical stretching on adsorption properties of nitrogen-doped graphene
\jour Fizika Tverdogo Tela
\yr 2018
\vol 60
\issue 4
\pages 816--820
\mathnet{http://mi.mathnet.ru/ftt9253}
\crossref{https://doi.org/10.21883/FTT.2018.04.45699.220}
\elib{https://elibrary.ru/item.asp?id=32739862}
\transl
\jour Phys. Solid State
\yr 2018
\vol 60
\issue 4
\pages 821--825
\crossref{https://doi.org/10.1134/S106378341804008X}
Linking options:
https://www.mathnet.ru/eng/ftt9253
https://www.mathnet.ru/eng/ftt/v60/i4/p816
This publication is cited in the following 9 articles:
A. I. Podlivaev, K. S. Grishakov, K. P. Katin, M. M. Malov, “Interlayer heat conductivity and thermal stability of distorted bilayer graphene”, JETP Letters, 113:3 (2021), 169–175
Petr M. Korusenko, Sergey N. Nesov, Anna A. Iurchenkova, Ekaterina O. Fedorovskaya, Valery V. Bolotov, Sergey N. Povoroznyuk, Dmitry A. Smirnov, Alexander S. Vinogradov, “Comparative Study of the Structural Features and Electrochemical Properties of Nitrogen-Containing Multi-Walled Carbon Nanotubes after Ion-Beam Irradiation and Hydrochloric Acid Treatment”, Nanomaterials, 11:9 (2021), 2163
A. I. Podlivaev, “Decay dynamics of hydrogen clusters on surfaces of graphene and Stone–Wales graphene”, Phys. Solid State, 62:12 (2020), 2452–2458
Konstantin Grishakov, Konstantin Katin, Mikhail Maslov, “The Effects of Doping on the Electronic Characteristics and Adsorption Behavior of Silicon Polyprismanes”, Computation, 8:2 (2020), 25
A. I. Podlivaev, “Thermal stability of carbinofullerenes C$_{38}$, C$_{62}$ and C$_{64}$”, Phys. Solid State, 62:6 (2020), 1109–1115
I. Yu. Dolinskii, K. S. Grishakov, V. S. Prudkovskii, “Effect of a nitrogen doping and a mechanical stress on the adsorption capacity of graphdiene”, Phys. Solid State, 61:2 (2019), 274–278
Yue-ling Ding, Zhen Tian, Hui-jun Li, Xiao-min Wang, “Efficient removal of organic dyes using a three-dimensional graphene aerogel with excellent recycling stability”, New Carbon Materials, 34:4 (2019), 315
Aleksey Kochaev, Konstantin Katin, Mikhail Maslov, “Acoustical characteristics of single-walled noncarbon nanotubes: Longitudinal and torsional waves”, Computational Condensed Matter, 18 (2019), e00350
L. A. Openov, A. I. Podlivaev, “C–C$_{20}$ carbyne-carbynofullerene chains”, Phys. Solid State, 61:12 (2019), 2553–2559