Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2018, Volume 60, Issue 9, Pages 1707–1716
DOI: https://doi.org/10.21883/FTT.2018.09.46388.019
(Mi ftt9074)
 

This article is cited in 19 scientific papers (total in 19 papers)

Magnetism

Magnetic core/shell nanocomposites MgFe22O44/SiO22 for biomedical application: synthesis and properties

A. S. Kamzina, H. Dasbc, N. Wakiyade, A. A. Valiullinf

a Ioffe Institute, St. Petersburg
b Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
c Materials Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
d Department of Electronics and Materials Science, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
e Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
f Kazan (Volga Region) Federal University
Abstract: Magnetic core/shell (CS) nanocomposites (MNCs) are synthesized using a simple method, in which a magnesium ferrite nanoparticle (MgFe22O44) is a core, and an amorphous silicon dioxide (silica SiO22) layer is a shell. The composition, morphology, and structure of synthesized particles are studied using X-ray diffraction, field emission electron microscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), scattering electrophoretic photometer, thermogravimetric analysis (TGA), and Mössbauer spectroscopy. It is found that the MgFe22O44/SiO22 MNC has the core/shell structure formed by the Fe–O–Si chemical bond. After coating with silica, the MgFe22O44/SiO22 MNC saturation magnetization significantly decreases in comparison with MgFe22O44 particles without a SiO22 shell. Spherical particles agglomerated from MgFe22O44 nanocrystallites 9.6 and 11.5 nm in size function as cores coated with SiO22 shells 30 and 50 nm thick, respectively. The total size of obtained CS MNCs is 200 and 300 nm, respectively. Synthesized CS MgFe22O44/SiO22 MNCs are very promising for biomedical applications, due to the biological compatibility of silicon dioxide, its sizes, and the fact that the Curie temperature is in the region required for hyperthermal therapy, 320 K.
Received: 23.01.2018
Revised: 15.03.2018
English version:
Physics of the Solid State, 2018, Volume 60, Issue 9, Pages 1752–1761
DOI: https://doi.org/10.1134/S1063783418090147
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Kamzin, H. Das, N. Wakiya, A. A. Valiullin, “Magnetic core/shell nanocomposites MgFe22O44/SiO22 for biomedical application: synthesis and properties”, Fizika Tverdogo Tela, 60:9 (2018), 1707–1716; Phys. Solid State, 60:9 (2018), 1752–1761
Citation in format AMSBIB
\Bibitem{KamDasWak18}
\by A.~S.~Kamzin, H.~Das, N.~Wakiya, A.~A.~Valiullin
\paper Magnetic core/shell nanocomposites MgFe$_{2}$O$_{4}$/SiO$_{2}$ for biomedical application: synthesis and properties
\jour Fizika Tverdogo Tela
\yr 2018
\vol 60
\issue 9
\pages 1707--1716
\mathnet{http://mi.mathnet.ru/ftt9074}
\crossref{https://doi.org/10.21883/FTT.2018.09.46388.019}
\elib{https://elibrary.ru/item.asp?id=36903688}
\transl
\jour Phys. Solid State
\yr 2018
\vol 60
\issue 9
\pages 1752--1761
\crossref{https://doi.org/10.1134/S1063783418090147}
Linking options:
  • https://www.mathnet.ru/eng/ftt9074
  • https://www.mathnet.ru/eng/ftt/v60/i9/p1707
  • This publication is cited in the following 19 articles:
    1. Yu.V. Knyazev, D.A. Balaev, S.V. Stolyar, A.O. Shokhrina, D.A. Velikanov, A.I. Pankrats, A.M. Vorotynov, A.A. Krasikov, S.A. Skorobogatov, M.N. Volochaev, O.A. Bayukov, R.S. Iskhakov, “Magnetically dead layer in interacting ultrafine NiFe2O4 nanoparticles”, Journal of Magnetism and Magnetic Materials, 613 (2025), 172675  crossref
    2. Saeid Taghavi Fardood, Sara Ganjkhanlu, Farzaneh Moradnia, Ali Ramazani, “Green synthesis, characterization, and photocatalytic activity of superparamagnetic MgFe2O4@ZnAl2O4 nanocomposites”, Sci Rep, 14:1 (2024)  crossref
    3. Yu. V. Knyazev, D. A. Balaev, S. A. Skorobogatov, D. A. Velikanov, O. A. Bayukov, S. V. Stolyar, V. P. Ladygina, A. A. Krasikov, R. S. Iskhakov, “Superparamagnetic Relaxation in Ensembles of Ultrasmall Ferrihydrite Nanoparticles”, Phys. Metals Metallogr., 125:4 (2024), 377  crossref
    4. Yu. V. Knyazev, D. A. Balaev, S. A. Skorobogatov, D. A. Velikanov, O. A. Bayukov, S. V. Stolyar, V. P. Ladygina, A. A. Krasikov, R. S. Iskhakov, “Superparamagnetic Relaxation in Ensembles of Ultrasmall Ferrihydrite Nanoparticles”, Fizika metallov i metallovedenie, 125:4 (2024), 420  crossref
    5. E. V. Tomina, B. V. Sladkopevtsev, Nguyen Anh Tien, Vo Quang Mai, “Nanocrystalline Ferrites with Spinel Structure for Various Functional Applications”, Inorg Mater, 59:13 (2023), 1363  crossref
    6. Subiya K. Kazi, Shaukatali N. Inamdar, Dhanraj P. Kamble, Kishan S. Lohar, Appasaheb W. Suryawanshi, Radhakrishnan M. Tigote, “Structural studies of silica‐supported spinel magnesium ferrite nanorods for photocatalytic degradation of methyl orange”, J Chinese Chemical Soc, 69:7 (2022), 1032  crossref
    7. T.A. Taha, Moataz G. Fayed, Saad G. Mohamed, “Enhanced electrochemical performance of MgFe2O4/SrTiO3 and MgFe2O4/SiO2 nanocomposite structures”, Journal of Alloys and Compounds, 925 (2022), 166660  crossref
    8. Sabrina A. Camacho, J.J. Hernández-Sarria, Josino Villela S. Neto, M. Montañez-Molina, F. Muñoz-Muñoz, H. Tiznado, J. López-Medina, O.N. Oliveira, J.R. Mejía-Salazar, Silicon-Based Hybrid Nanoparticles, 2022, 325  crossref
    9. Min Yang, Guangshe Li, Huixia Li, Junfang Ding, Yan Wang, Liping Li, “Growth kinetic control over MgFe2O4 to tune Fe occupancy and metal–support interactions for optimum catalytic performance”, CrystEngComm, 23:13 (2021), 2538  crossref
    10. Heba G. El‐Attar, Mohamed A. Salem, Eman A. Bakr, “Facile synthesis of recoverable superparamagnetic AgFeO2@Polypyrrole/SiO2 nanocomposite as an excellent catalyst for reduction and oxidation of different dyes in wastewater”, Applied Organom Chemis, 35:10 (2021)  crossref
    11. Manju Kurian, Smitha Thankachan, “Structural diversity and applications of spinel ferrite core - Shell nanostructures- A review”, Open Ceramics, 8 (2021), 100179  crossref
    12. Tuyet Nhung Pham, Tran Quang Huy, Anh-Tuan Le, “Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications”, RSC Adv., 10:52 (2020), 31622  crossref
    13. Gulshan Dhillon, Naveen Kumar, Mansi Chitkara, Inderjeet Singh Sandhu, “Effect of A-site substitution and calcination temperature in Fe3O4 spinel ferrites”, J Mater Sci: Mater Electron, 31:21 (2020), 18903  crossref
    14. M.V. Zdorovets, A.E. Shumskaya, A.L. Kozlovskiy, “Investigation of the effect of phase transformations on the magnetic and electrical properties of Co/Co3O4 nanowires”, Journal of Magnetism and Magnetic Materials, 497 (2020), 166079  crossref
    15. Rabindran Jermy, Vijaya Ravinayagam, Widyan Alamoudi, Dana Almohazey, Silviya Elanthikkal, Hatim Dafalla, Suriya Rehman, Govindasamy Chandrasekar, Abdulhadi Baykal, “Tuning pH sensitive chitosan and cisplatin over spinel ferrite/silica nanocomposite for anticancer activity in MCF-7 cell line”, Journal of Drug Delivery Science and Technology, 57 (2020), 101711  crossref
    16. A. S. Kamzin, I. M. Obaidat, A. A. Valiullin, V. G. Semenov, I. A. Al-Omari, “The composition and magnetic structure of Fe$_{3}$O$_{4}$/$\gamma$-Fe$_{2}$O$_{3}$ core–shell nanocomposites at 300 and 80 K: Mössbauer study (Part I)”, Phys. Solid State, 62:10 (2020), 1933–1943  mathnet  mathnet  crossref  crossref
    17. A. S. Kamzin, I. M. Obaidat, A. A. Valiullin, V. G. Semenov, I. A. Al-Omari, “The composition and magnetic structure of Fe$_{3}$O$_{4}$/$\gamma$-Fe$_{2}$O$_{3}$ core-shell nanocomposites under external magnetic field: Mössbauer study (Part II)”, Phys. Solid State, 62:11 (2020), 2167–2172  mathnet  mathnet  crossref  crossref
    18. Gopala Krishna Dasari, Satyaveni Sunkara, Purna Chandra Rao Gadupudi, “One-step synthesis of magnetically recyclable palladium loaded magnesium ferrite nanoparticles: application in synthesis of anticancer drug PCI-32765”, Inorganic and Nano-Metal Chemistry, 50:9 (2020), 753  crossref
    19. A. S. Kamzin, A. A. Valiullin, V. G. Semenov, Harinarayan Das, Naoki Wakiya, “Properties of MgFe$_{2}$O$_{4}$ nanoparticles synthesized by ultrasonic aerosol pyrolysis for biomedical applications”, Phys. Solid State, 61:6 (2019), 1113–1121  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :26
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025