Abstract:
A technique of measuring the rotation of the light polarization plane in pulsed magnetic fields with strength up to 40 T with a sensitivity of ∼0.1∘ is proposed. The Faraday effect has been studied in films of diluted ferrites–garnets (Lu,Bi)3(Fe,Ga,Al)5O12 in the temperature range from room temperature to 78 K, including the vicinity of the magnetic moment compensation temperature. The transition to the noncollinear phase in the magnetic phase diagram is shown to occur at a magnetic field strength higher than 30 T at room temperature, and the threshold transition field tends to zero when approaching the magnetic moment compensation temperature.
Keywords:
Ferrite Garnet, Strong Pulsed Magnetic Fields, Faraday Effect, Magnetic Phase Diagram, Faraday Rotation Angle.
Citation:
Yu. B. Kudasov, M. Logunov, R. V. Kozabaranov, I. V. Makarov, V. V. Platonov, O. M. Surdin, D. A. Maslov, A. S. Korshunov, E. Ya. Popov, A. S. Svetlov, “Magnetooptic properties of bismuth-substituted ferrite–garnet films in strong pulsed magnetic fields”, Fizika Tverdogo Tela, 60:11 (2018), 2166–2169; Phys. Solid State, 60:11 (2018), 2207–2210
\Bibitem{KudLogKoz18}
\by Yu.~B.~Kudasov, M.~Logunov, R.~V.~Kozabaranov, I.~V.~Makarov, V.~V.~Platonov, O.~M.~Surdin, D.~A.~Maslov, A.~S.~Korshunov, E.~Ya.~Popov, A.~S.~Svetlov
\paper Magnetooptic properties of bismuth-substituted ferrite--garnet films in strong pulsed magnetic fields
\jour Fizika Tverdogo Tela
\yr 2018
\vol 60
\issue 11
\pages 2166--2169
\mathnet{http://mi.mathnet.ru/ftt9011}
\crossref{https://doi.org/10.21883/FTT.2018.11.46658.13NN}
\elib{https://elibrary.ru/item.asp?id=36903764}
\transl
\jour Phys. Solid State
\yr 2018
\vol 60
\issue 11
\pages 2207--2210
\crossref{https://doi.org/10.1134/S106378341811015X}
Linking options:
https://www.mathnet.ru/eng/ftt9011
https://www.mathnet.ru/eng/ftt/v60/i11/p2166
This publication is cited in the following 8 articles:
Anjori Sharma, Dipesh, “Unlocking the Potential of Garnet Ferrites: A Comprehensive Review on Properties, Preparation Methods, and Applications”, Matls. Perf. Charact., 13:1 (2024), 20230082
A. Dolgikh, T. B. Shapaeva, K. T. Yamada, M. V. Logunov, T. H. Rasing, A. V. Kimel, “Magneto-optical diffraction of visible light as a probe of nanoscale displacement of domain walls at femtosecond timescales”, Review of Scientific Instruments, 94:10 (2023)
Ousmane Ly, “Noncollinear antiferromagnetic textures driven high-harmonic generation from magnetic dynamics in the absence of spin-orbit coupling”, J. Phys.: Condens. Matter, 35:12 (2023), 125802
I. A. Dolgikh, F. Formisano, K. H. Prabhakara, M. V. Logunov, A. K. Zvezdin, P. C. M. Christianen, A. V. Kimel, “Spin dynamics driven by ultrafast laser-induced heating of iron garnet in high magnetic fields”, Applied Physics Letters, 120:1 (2022)
Yu. B. Kudasov, M. V. Logunov, R. V. Kozabaranov, I. V. Makarov, V. V. Platonov, O. M. Surdin, D. A. Maslov, A. S. Korshunov, I. S. Strelkov, A. I. Stognij, V. D. Selemir, S. A. Nikitov, “Giant widening of interface magnetic layer in almost compensated iron garnet”, Applied Physics Letters, 120:12 (2022)
Alexander D. Zigert, Galina G. Dunaeva, Elena M. Semenova, Alexandra I. Ivanova, Alexander Yu. Karpenkov, Nickolay Yu. Sdobnyakov, “Fractal Dimension Behaviour of Maze Domain Pattern in Ferrite-Garnet Films During Magnetisation Reversal”, J Supercond Nov Magn, 35:8 (2022), 2187
Yu. B. Kudasov, R. V. Kozabaranov, “Magnetic structure of dilute iron garnets”, Phys. Solid State, 61:9 (2019), 1590–1593
Yu B Kudasov, R V Kozabaranov, “Inhomogeneuos state of ferrimagnetic film near compensation point”, J. Phys.: Conf. Ser., 1389:1 (2019), 012109