Abstract:
Electric polarization in ErCrO$_{3}$ single crystals has been investigated in the temperature range of 5–370 K. Ferroelectric ordering has not been found in any of the directions. However, electric polarization induced by restricted polar domains of structural origin has been observed. These domains are formed in the crystal matrix near impurity Bi$^{3+}$ ions partially substituting Er$^{3+}$ ions during the growth of single crystals by the method of spontaneous crystallization using solvent Bi$_2$O$_3$. The restricted polar domains form the superparaelectric state. Hysteresis loops with remanent polarization, both along the c axis and in the [110] directions, have been observed below some temperatures $T_{\operatorname{fr}}$ (in the frozen superparaelectric state). The polarization exists up to certain temperatures, which depend on the applied electric field orientation with respect to the crystal axes and exceed significantly temperature $T_N$ of magnetic ordering. These temperatures correspond to the condition $kT_{\operatorname{fr}}\approx E_{A}$ for activation barriers at the boundaries of the restricted polar domains.
Citation:
V. A. Sanina, B. Kh. Khannanov, E. I. Golovenchits, M. P. Scheglov, “Electric polarization in ErCrO$_{3}$ induced by restricted polar domains”, Fizika Tverdogo Tela, 61:3 (2019), 501–509; Phys. Solid State, 61:3 (2019), 370–378
\Bibitem{SanKhaGol19}
\by V.~A.~Sanina, B.~Kh.~Khannanov, E.~I.~Golovenchits, M.~P.~Scheglov
\paper Electric polarization in ErCrO$_{3}$ induced by restricted polar domains
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 3
\pages 501--509
\mathnet{http://mi.mathnet.ru/ftt8887}
\crossref{https://doi.org/10.21883/FTT.2019.03.47242.286}
\elib{https://elibrary.ru/item.asp?id=37478508}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 3
\pages 370--378
\crossref{https://doi.org/10.1134/S1063783419030284}
Linking options:
https://www.mathnet.ru/eng/ftt8887
https://www.mathnet.ru/eng/ftt/v61/i3/p501
This publication is cited in the following 8 articles:
A. Jablunovskis, E. P. Chukalina, L. H. Yin, M. N. Popova, Pis'ma v Zh. Èksper. Teoret. Fiz., 118:2 (2023), 82–89
S. Yano, Chin-Wei Wang, Yinghao Zhu, Kaitong Sun, Hai-Feng Li, “Magnetic structure and phase transition in a single crystal of
ErCrO3”, Phys. Rev. B, 108:17 (2023)
A. Jablunovskis, E. P. Chukalina, L. H. Yin, M. N. Popova, “High-Resolution Spectroscopy of the ErCrO3 Crystal: A New Phase Transition?”, Jetp Lett., 118:2 (2023), 92
A. K. Zvezdin, Z. V. Gareeva, X. M. Chen, “Magnetoelectric Effect in Multiferroics with a Perovskite Structure”, Phys. Metals Metallogr., 123:7 (2022), 651
Z. V. Gareeva, A. K. Zvezdin, N. V. Shul'ga, T. T. Gareev, S. M. Chen, “Mechanisms of Magnetoelectric Effects in Oxide Multiferroics with a Perovskite Praphase”, Phys. Solid State, 64:5 (2022), 248
Zukhra Gareeva, Anatoly Zvezdin, Konstantin Zvezdin, Xiangming Chen, “Symmetry Analysis of Magnetoelectric Effects in Perovskite-Based Multiferroics”, Materials, 15:2 (2022), 574
A K Zvezdin, Z V Gareeva, X M Chen, “Multiferroic order parameters in rhombic antiferromagnets RCrO3”, J. Phys.: Condens. Matter, 33:38 (2021), 385801
V. A. Sanina, B. Kh. Khannanov, E. I. Golovenchits, M. P. Scheglov, “Electric polarization in ErCrO$_{3}$ induced by restricted polar domains”, Phys. Solid State, 61:3 (2019), 370–378