Abstract:
Implantation of ions into amorphous silicon dioxide ($a$-SiO$_{2}$) is widely used in microelectronics (mainly, using Si ions) and in the production of light-guiding components of optical fibers (Ge, P, B ions). All of these elements interact with the matrix oxygen, so the point defects that occur during implantation are not only the result of the displacement of the silicon–oxygen frame atoms from their equilibrium positions, but also reflect the specific chemical interaction in the material. In this study, inert argon ions were implanted into silicon dioxide plates, which excluded chemical reactions. It is demonstrated using photoluminescence (PL) that the highest concentration of point defects in the damaged silicate network belongs to neutral oxygen vacancies (NOVs). The concentration of these and some other induced defects increased with an increase in fluence up to 5 $\times$ 10$^{15}$ Ar$^+$/cm$^2$, and, with a further increase in dose, the concentration dropped due to annealing of defects in the layer heated by the introduction of ions. The NOV defects appeared in the photoluminescence spectrum in the form of doublets, that is, pairs of bands belonging to the same optical transition. The appearance of doublets is explained by the dependence of the optical transition energy on the localization of identical point defects in zones of different distortions of the matrix structure.
Citation:
I. P. Shcherbakov, A. E. Chmel, “Photoluminescence of amorphous SiO$_{2}$ with implanted Ar$^+$ ions”, Fizika Tverdogo Tela, 61:4 (2019), 715–718; Phys. Solid State, 61:4 (2019), 592–595
\Bibitem{ShcChm19}
\by I.~P.~Shcherbakov, A.~E.~Chmel
\paper Photoluminescence of amorphous SiO$_{2}$ with implanted Ar$^+$ ions
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 4
\pages 715--718
\mathnet{http://mi.mathnet.ru/ftt8858}
\crossref{https://doi.org/10.21883/FTT.2019.04.47418.319}
\elib{https://elibrary.ru/item.asp?id=37645617}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 4
\pages 592--595
\crossref{https://doi.org/10.1134/S1063783419040279}
Linking options:
https://www.mathnet.ru/eng/ftt8858
https://www.mathnet.ru/eng/ftt/v61/i4/p715
This publication is cited in the following 3 articles:
V.G. Ilves, M.G. Zuev, A.A. Vasin, P.M. Korusenko, S. Yu Sokovnin, M.V. Ulitko, A.S. Gerasimov, “Properties of an amorphous crystalline nanopowder Si–SiO2 produced by pulsed electron beam evaporation”, Materials Chemistry and Physics, 316 (2024), 129026
E. Szilágyi, M.K. Pal, E. Kótai, Z. Zolnai, I. Bányász, “Fluence evolution of defects in α-SiO2 determined by ionoluminescence”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 555 (2024), 165470