Abstract:
The analysis of the unified series of single-phase Zn2−2xMn2xSiO4 samples (x⩽ 0.2) has provided the possibility to determine the optimal dopant concentration x = 0.13 for the maximum luminescence intensity. It has been established that the dominating mechanism of concentration luminescence quenching and excitation energy dissipation is the oxidation of some Mn2+ activating ions and the growth of defectness in the luminophore due to this process Phosphors.
Citation:
T. A. Onufrieva, T. I. Krasnenko, N. A. Zaitseva, I. V. Baklanova, M. V. Rotermel', I. V. Ivanova, I. D. Popov, R. F. Samigullina, “Origin of the concentration quenching of luminescence in Zn2SiO4 : Mn phosphors”, Fizika Tverdogo Tela, 61:5 (2019), 908–911; Phys. Solid State, 61:5 (2019), 806–810
\Bibitem{OnuKraZai19}
\by T.~A.~Onufrieva, T.~I.~Krasnenko, N.~A.~Zaitseva, I.~V.~Baklanova, M.~V.~Rotermel', I.~V.~Ivanova, I.~D.~Popov, R.~F.~Samigullina
\paper Origin of the concentration quenching of luminescence in Zn$_{2}$SiO$_{4}$ : Mn phosphors
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 5
\pages 908--911
\mathnet{http://mi.mathnet.ru/ftt8823}
\crossref{https://doi.org/10.21883/FTT.2019.05.47591.27F}
\elib{https://elibrary.ru/item.asp?id=39133741}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 5
\pages 806--810
\crossref{https://doi.org/10.1134/S1063783419050238}
Linking options:
https://www.mathnet.ru/eng/ftt8823
https://www.mathnet.ru/eng/ftt/v61/i5/p908
This publication is cited in the following 9 articles:
Irina V. Ivanova, Tatiana I. Krasnenko, “Analysis of the reasons for the enhanced green luminescence of Mg2+-doped Zn2SiO4:Mn2+ phosphor”, Optical Materials, 157 (2024), 116261
N. A. Zaitseva, R. F. Samigullina, I. V. Ivanova, T. I. Krasnenko, “Fazovye ravnovesiya i khimicheskie vzaimodeistviya v sistemakh Mn<sub>2</sub>O<sub>3</sub>–ZnO–SiO<sub>2</sub>, Mn<sub>3</sub>O<sub>4</sub>–ZnO–SiO<sub>2</sub> i MnO–ZnO–SiO<sub>2</sub>”, Zhurnal neorganicheskoi khimii, 68:12 (2023), 1779
N. A. Zaitseva, R. F. Samigullina, I. V. Ivanova, T. I. Krasnenko, “Phase Equilibria and Chemical Reactions in the Mn2O3–ZnO–SiO2, Mn3O4–ZnO–SiO2, and MnO–ZnO–SiO2 Systems”, Russ. J. Inorg. Chem., 68:12 (2023), 1799
Irina V. Ivanova, Natalia A. Zaitseva, Rina F. Samigullina, Tatiana I. Krasnenko, “Solid-state synthesis of ZnMn2O4 spinel: Sequence of phase transformations, thermal stability, localization and charge state of manganese ions in the intermediate and final reaction products”, Solid State Sciences, 136 (2023), 107110
Rina F. Samigullina, Irina V. Ivanova, Natalia A. Zaitseva, Tatiana I. Krasnenko, “Solid-state synthesis of the Zn2SiO4:Mn phosphor: Sequence of phase formation, localization and charge state of Mn ions in the intermediate and final reaction products”, Optical Materials, 132 (2022), 112788
Tatiana I. Krasnenko, Rina F. Samigullina, Natalia A. Zaitseva, Irina I. Ivanova, Stepan V. Pryanichnikov, Maria V. Rotermel, “Distinctive features of the crystal-chemical, thermal and luminescence properties of (Zn0.94Mg0.06)2SiO4:Mn phosphor”, Journal of Alloys and Compounds, 907 (2022), 164433
A. A. Isaeva, V. P. Smagin, “Photoluminescence of (Zn,Pb,Mn)S quantum dots in polyacrylate matrix”, Semiconductors, 54:5 (2020), 511–517
Tatiana I. Krasnenko, Natalia A. Zaitseva, Irina V. Ivanova, Inna V. Baklanova, Rina F. Samigullina, Mary V. Rotermel, “The effect of Mg introduction on structural and luminescence properties of Zn2SiO4:Mn phosphor”, Journal of Alloys and Compounds, 845 (2020), 156296
Zejun Ye, Jie Li, Gang Wang, Zhenfeng Qi, Gongwen Gan, Yan Yang, Huaiwu Zhang, “Synthesis, phase composition and modified microwave dielectric properties of Mg2+ substituted Zn2SiO4 ceramics with uniform microstructure”, Mater. Res. Express, 6:10 (2019), 106313