Abstract:
The conversion of the energy absorbed by cubic Gd22O33 nanocrystals doped with Er3+3+ and codoped with Yb3+3+ and Zn2+2+ ions in a temperature range of 95–425 K is studied at various concentrations of dopants. The photoluminescence spectra confirm the ability of excitation energy transfer from the Gd3+3+ ions or the matrix towards the Er3+3+ ions. The population of upper excited states in the Er3+3+ ions depends on the way of excitation, which cause the alterations in the probability of multiphonon relaxation from the excited states to the radiative levels. The kinetics of photoluminescence decay exhibit the possible energy transfer from anionic defects created by extra doping with Zn2+2+ ions. The temperature dependences of the upconversion luminescence yield for emission lines of 560 and 660 nm are found to be different.
This work was supported by the Ministry of Education and Sciences of the Russian Federation (the basic part of the state task, project no. 3.1485.2017/4.6) and by the Government of the Russian Federation (decree no. 211, contract no. 02.A03.21.0006).
Citation:
E. S. Trofimova, V. A. Pustovarov, A. F. Zacepin, “Energy conversion in Gd22O33 nanocrystals doped with Er3+3+ ions”, Fizika Tverdogo Tela, 61:5 (2019), 872–875; Phys. Solid State, 61:5 (2019), 763–767
\Bibitem{TroPusZac19}
\by E.~S.~Trofimova, V.~A.~Pustovarov, A.~F.~Zacepin
\paper Energy conversion in Gd$_{2}$O$_{3}$ nanocrystals doped with Er$^{3+}$ ions
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 5
\pages 872--875
\mathnet{http://mi.mathnet.ru/ftt8815}
\crossref{https://doi.org/10.21883/FTT.2019.05.47583.13F}
\elib{https://elibrary.ru/item.asp?id=39133733}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 5
\pages 763--767
\crossref{https://doi.org/10.1134/S1063783419050366}
Linking options:
https://www.mathnet.ru/eng/ftt8815
https://www.mathnet.ru/eng/ftt/v61/i5/p872
This publication is cited in the following 7 articles:
V. V. Bakovets, T. D. Pivovarova, P. E. Plyusnin, I. P. Dolgovesova, M. I. Rakhmanova, A. V. Sotnikov, “Distribution of Tb3+ and Eu3+ Photoluminescence Activator Ions in the C-Ln2O3 Cationic Sublattice”, Russ J Gen Chem, 94:1 (2024), 138
M. M. Mikhailov, V. A. Goronchko, D. S. Fedosov, A. N. Lapin, S. A. Yuryev, “Comparison of optical properties and radiation stability of Gd<sub>2</sub>O<sub>3</sub> micro- and nanopowders”, Poverhnostʹ. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniâ, 2024, no. 3
M. M. Mikhailov, V. A. Goronchko, D. S. Fedosov, A. N. Lapin, S. A. Yuryev, “Comparison of Optical Properties and Radiation Stability of Gd2O3 Micro- and Nanopowders”, J. Surf. Investig., 18:2 (2024), 293
Tran Kim Anh, Vu Thi Thai Ha, Nguyen Thanh Huong, Do Thi Thao, Tien Dai Nguyen, Dang Van Thai, Robert Tomala, Le Quoc Minh, “Synthesis and characterizations of upconverting luminescent Er3+/ Yb3+: Gd2O3 uniform nanospheres for biomedical applications”, Phys. Scr., 99:10 (2024), 1059d5
V.A. Pustovarov, R.E. Nikolaev, V.A. Trifonov, M.S. Tarasenko, S.J. Dhoble, D.A. Tavrunov, N.G. Naumov, “Gadolinium oxide single crystals: Optical properties and radiation resistance”, Optical Materials, 141 (2023), 113966
V.A. Pustovarov, I.N. Ogorodnikov, R.E. Nikolaev, M.S. Tarasenko, D.A. Tavrunov, V.A. Trifonov, N.G. Naumov, “Locations of the energy levels of lanthanide ions in Gd2O3 single crystals”, Optical Materials, 143 (2023), 114265
I. N. Bazhukova, V. A. Pustovarov, A. V. Myshkina, M. V. Ulitko, “Luminescent nanomaterials doped with rare-earth elements and prospects for their biomedical applications”, Optics and Spectroscopy, 128:12 (2020), 2050–2068