|
This article is cited in 6 scientific papers (total in 6 papers)
Dielectrics
Induced quasidynamic disorder in the structure of quartz glass implanted with rhenium ions
A. F. Zacepina, D. Yu. Biriukova, N. V. Gavrilovb, T. V. Shtanga, M. S. Koubisyc, R. A. Parulina a Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
b Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Ekaterinburg
c Department of Physics, Faculty of Science, Al-Azhar University,
Assiut Branch 71542, Egypt
Abstract:
The ultraviolet (UV) absorption spectra of quartz KUVI glasses (type IV) irradiated with rhenium ions with an energy of 30 keV are studied. It was found that with increasing ion fluence (5 $\cdot$ 10$^{15}$–5 $\cdot$ 10$^{17}$ cm$^{2}$), a characteristic fan-shaped broadening of the optical absorption edge of glasses is observed. The results are interpreted within the framework of the generalized Urbach rule (approximation of quasidynamic disorder induced by ion irradiation). Based on the dose dependence of the characteristic Urbach energy, an estimate was made of the effective cross section for the process of radiative disordering of the glass matrix. It was found that this value varies within 1.07 $\cdot$ 10$^{-17}$–1.2 $\cdot$ 10$^{-18}$ cm$^{2}$ with increasing fluence. The optical gap width of the implanted samples was determined by the Tauts method for direct allowed interband transitions. Based on the principle of equivalence of static and dynamic structural disorder, a ratio of the constants of second-order deformation potentials was found, which determines the relationship between the Urbach energy and the optical gap width of silica glass matrix SiO$_2$.
Received: 01.02.2019 Revised: 01.02.2019 Accepted: 12.02.2019
Citation:
A. F. Zacepin, D. Yu. Biriukov, N. V. Gavrilov, T. V. Shtang, M. S. Koubisy, R. A. Parulin, “Induced quasidynamic disorder in the structure of quartz glass implanted with rhenium ions”, Fizika Tverdogo Tela, 61:6 (2019), 1094–1099; Phys. Solid State, 61:6 (2019), 1017–1022
Linking options:
https://www.mathnet.ru/eng/ftt8786 https://www.mathnet.ru/eng/ftt/v61/i6/p1094
|
Statistics & downloads: |
Abstract page: | 59 | Full-text PDF : | 23 |
|