Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2019, Volume 61, Issue 7, Pages 1374–1384
DOI: https://doi.org/10.21883/FTT.2019.07.47854.416
(Mi ftt8770)
 

This article is cited in 10 scientific papers (total in 10 papers)

Surface physics, thin films

Cobalt intercalation of graphene on silicon carbide

G. S. Grebenyuka, E. Yu. Lobanovab, D. A. Smirnovcd, I. A. Eliseyeva, A. V. Zubovb, A. N. Smirnova, S. P. Lebedeva, V. Yu. Davydova, A. A. Lebedeva, I. I. Proninab

a Ioffe Institute, St. Petersburg
b St. Petersburg National Research University of Information Technologies, Mechanics and Optics
c Saint Petersburg State University
d Institute of Solid State Physics, Dresden University of Technology, Dresden, Germany
Abstract: In this paper, we studied cobalt intercalation of single-layer graphene grown on the 4H-SiC(0001) polytype. The experiments were carried out in situ under ultrahigh vacuum conditions by high energy resolution photoelectron spectroscopy using synchrotron radiation and low energy electron diffraction. The nominal thicknesses of the deposited cobalt layers varied in the range of 0.2–5 nm, while the sample temperature was varied from room temperature to 800C. Unlike Fe films, the annealing of Co films deposited on graphene at room temperature is shown to not intercalate graphene by cobalt. The formation of the graphene–cobalt–SiC intercalation system was detected upon deposition of Co atoms on samples heated to temperatures of above 400C. Cobalt films with a thickness up to 2 nm under graphene are formed using this method, and they are shown to be magnetized along the surface at thicknesses of greater than 1.3 nm. Graphene intercalation by cobalt was found to be accompanied by the chemical interaction of Co atoms with silicon carbide leading to the synthesis of cobalt silicides. At temperatures of above 500C, the growth of cobalt films under graphene is limited by the diffusion of Co atoms into the bulk of silicon carbide.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.21
3.3161.2017/4.6
The work was supported the Ioffe Institute, project no. 14.21. E. Yu. L. was supported by the Ministry of Education and Science of Russian Federation, project no. 3.3161.2017/4.6.
Received: 13.03.2019
Revised: 13.03.2019
Accepted: 15.03.2019
English version:
Physics of the Solid State, 2019, Volume 61, Issue 7, Pages 1316–1326
DOI: https://doi.org/10.1134/S1063783419070102
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. S. Grebenyuk, E. Yu. Lobanova, D. A. Smirnov, I. A. Eliseyev, A. V. Zubov, A. N. Smirnov, S. P. Lebedev, V. Yu. Davydov, A. A. Lebedev, I. I. Pronin, “Cobalt intercalation of graphene on silicon carbide”, Fizika Tverdogo Tela, 61:7 (2019), 1374–1384; Phys. Solid State, 61:7 (2019), 1316–1326
Citation in format AMSBIB
\Bibitem{GreLobSmi19}
\by G.~S.~Grebenyuk, E.~Yu.~Lobanova, D.~A.~Smirnov, I.~A.~Eliseyev, A.~V.~Zubov, A.~N.~Smirnov, S.~P.~Lebedev, V.~Yu.~Davydov, A.~A.~Lebedev, I.~I.~Pronin
\paper Cobalt intercalation of graphene on silicon carbide
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 7
\pages 1374--1384
\mathnet{http://mi.mathnet.ru/ftt8770}
\crossref{https://doi.org/10.21883/FTT.2019.07.47854.416}
\elib{https://elibrary.ru/item.asp?id=41130039}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 7
\pages 1316--1326
\crossref{https://doi.org/10.1134/S1063783419070102}
Linking options:
  • https://www.mathnet.ru/eng/ftt8770
  • https://www.mathnet.ru/eng/ftt/v61/i7/p1374
  • This publication is cited in the following 10 articles:
    1. Yann Girard, Sarah Benbouabdellah, Outhmane Chahib, Cyril Chacon, Amandine Bellec, Vincent Repain, Jérôme Lagoute, Yannick J. Dappe, César González, Wei-Bin Su, “Growth and local electronic properties of Cobalt nanodots underneath graphene on SiC(0001)”, Carbon, 208 (2023), 22  crossref
    2. S. O. Fulnov, D. A. Estyunin, I. I. Klimovskikh, T. P. Makarova, A. V. Koroleva, A. A. Rybkina, R. G. Chumakov, A. M. Lebedev, O. Yu. Vilkov, A. M. Shikin, A. G. Rybkin, “Joint intercalation of ultrathin Fe and Co films under a graphene buffer layer on a SiC(0001) single crystal”, JETP Letters, 117:5 (2023), 363–369  mathnet  mathnet  crossref  crossref
    3. S. Chen, Y. Han, M. Kolmer, J. Hall, M. Hupalo, J. W. Evans, M. C. Tringides, “Targeted Dy intercalation under graphene/SiC for tuning its electronic band structure”, Phys. Rev. B, 107:4 (2023)  crossref
    4. A. A. Rybkina, S. O. Filnov, A. V. Tarasov, D. V. Danilov, M. V. Likholetova, V. Yu. Voroshnin, D. A. Pudikov, D. A. Glazkova, A. V. Eryzhenkov, I. A. Eliseyev, V. Yu. Davydov, A. M. Shikin, A. G. Rybkin, “Quasi-freestanding graphene on SiC(0001) via cobalt intercalation of zero-layer graphene”, Phys. Rev. B, 104:15 (2021)  crossref
    5. Jimmy C. Kotsakidis, Marc Currie, Antonija Grubišić‐Čabo, Anton Tadich, Rachael L. Myers‐Ward, Matthew DeJarld, Kevin M. Daniels, Chang Liu, Mark T. Edmonds, Amadeo L. Vázquez de Parga, Michael S. Fuhrer, D. Kurt Gaskill, “Increasing the Rate of Magnesium Intercalation Underneath Epitaxial Graphene on 6H‐SiC(0001)”, Adv Materials Inter, 8:23 (2021)  crossref
    6. S. M. Dunaevskii, E. Yu. Lobanova, E. K. Mikhailenko, I. I. Pronin, “Electronic structure of graphene on silicon carbide intercalated with silicon and cobalt atoms”, Phys. Solid State, 63:6 (2021), 819–824  mathnet  mathnet  crossref  crossref
    7. S. Yu. Davydov, “Magnetization of epitaxial graphene induced by magnetic metallic substrate”, Phys. Solid State, 62:2 (2020), 378–383  mathnet  mathnet  crossref  crossref
    8. G. S. Grebenyuk, I. A. Eliseyev, S. P. Lebedev, E. Yu. Lobanova, D. A. Smirnov, V. Yu. Davydov, A. A. Lebedev, I. I. Pronin, “Intercalation synthesis of cobalt silicides under graphene grown on silicon carbide”, Phys. Solid State, 62:3 (2020), 519–528  mathnet  mathnet  crossref  crossref
    9. Jimmy C. Kotsakidis, Antonija Grubišić-Čabo, Yuefeng Yin, Anton Tadich, Rachael L. Myers-Ward, Matthew DeJarld, Shojan P. Pavunny, Marc Currie, Kevin M. Daniels, Chang Liu, Mark T. Edmonds, Nikhil V. Medhekar, D. Kurt Gaskill, Amadeo L. Vázquez de Parga, Michael S. Fuhrer, “Freestanding n-Doped Graphene via Intercalation of Calcium and Magnesium into the Buffer Layer–SiC(0001) Interface”, Chem. Mater., 32:15 (2020), 6464  crossref
    10. G. S. Grebenyuk, I. A. Eliseyev, S. P. Lebedev, E. Yu. Lobanova, D. A. Smirnov, V. Yu. Davydov, A. A. Lebedev, I. I. Pronin, “Formation of iron silicides under graphene grown on the silicon carbide surface”, Phys. Solid State, 62:10 (2020), 1944–1948  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025