Loading [MathJax]/jax/output/CommonHTML/config.js
Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2019, Volume 61, Issue 11, Pages 2163–2168
DOI: https://doi.org/10.21883/FTT.2019.11.48423.444
(Mi ftt8631)
 

This article is cited in 22 scientific papers (total in 22 papers)

Lattice dynamics

Dynamics of a three-component delocalized nonlinear vibrational mode in graphene

S. A. Shcherbinina, M. N. Semenovab, A. S. Semenovb, E. A. Korznikovac, G. M. Chechina, S. V. Dmitrievcd

a Research Institute of Physics, Southern Federal University, Rostov-on-Don
b Ammosov North-Eastern Federal University, Mirny, Sakha (Yakutia), Russia
c Institute for Metals Superplasticity Problems of RAS, Ufa
d Tomsk State University
Abstract: The dynamics of a three-component nonlinear delocalized vibrational mode in graphene is studied with molecular dynamics. This mode, being a superposition of a root and two one-component modes, is an exact and symmetrically determined solution of nonlinear equations of motion of carbon atoms. The dependences of a frequency, energy per atom, and average stresses over a period that appeared in graphene are calculated as a function of amplitude of a root mode. We showed that the vibrations become periodic with certain amplitudes of three component modes, and the vibrations of one-component modes are close to periodic one and have a frequency twice the frequency of a root mode, which is noticeably higher than the upper boundary of a spectrum of low-amplitude vibrations of a graphene lattice. The data obtained expand our understanding of nonlinear vibrations of graphene lattice.
Keywords: nonlinear dynamics, graphene, delocalized oscillations, second harmonic generation.
Funding agency Grant number
Russian Science Foundation 18-72-00006
Russian Foundation for Basic Research 18-32-20158 мол_а_вед
Ministry of Education and Science of the Russian Federation
A.S. Semenov (calculations together with discussion of results) is grateful to Russian Science Foundation (project no. 18-72-00006). E.A. Korznikova is grateful to Russian Foundation for Basic Research (grant no. 18-32-20158 mol_a_ved) for financial support (discussion of results and writing the article). This work was partially supported by the State Assignment of the Institute for Metals Superplasticity Problems (Russian Academy of Sciences).
Received: 02.04.2019
Revised: 06.06.2019
Accepted: 14.06.2019
English version:
Physics of the Solid State, 2019, Volume 61, Issue 11, Pages 2139–2144
DOI: https://doi.org/10.1134/S1063783419110313
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Shcherbinin, M. N. Semenova, A. S. Semenov, E. A. Korznikova, G. M. Chechin, S. V. Dmitriev, “Dynamics of a three-component delocalized nonlinear vibrational mode in graphene”, Fizika Tverdogo Tela, 61:11 (2019), 2163–2168; Phys. Solid State, 61:11 (2019), 2139–2144
Citation in format AMSBIB
\Bibitem{ShcSemSem19}
\by S.~A.~Shcherbinin, M.~N.~Semenova, A.~S.~Semenov, E.~A.~Korznikova, G.~M.~Chechin, S.~V.~Dmitriev
\paper Dynamics of a three-component delocalized nonlinear vibrational mode in graphene
\jour Fizika Tverdogo Tela
\yr 2019
\vol 61
\issue 11
\pages 2163--2168
\mathnet{http://mi.mathnet.ru/ftt8631}
\crossref{https://doi.org/10.21883/FTT.2019.11.48423.444}
\elib{https://elibrary.ru/item.asp?id=41300788}
\transl
\jour Phys. Solid State
\yr 2019
\vol 61
\issue 11
\pages 2139--2144
\crossref{https://doi.org/10.1134/S1063783419110313}
Linking options:
  • https://www.mathnet.ru/eng/ftt8631
  • https://www.mathnet.ru/eng/ftt/v61/i11/p2163
  • This publication is cited in the following 22 articles:
    1. O. V. Bachurina, A. A. Kudreyko, D. V. Bachurin, “Influence of two-dimensional discrete breathers on the macroscopic properties of fcc metals”, Eur. Phys. J. B, 98:2 (2025)  crossref
    2. Igor A. Shepelev, Elvira G. Soboleva, Aleksey A. Kudreyko, Sergey V. Dmitriev, “Influence of the relative stiffness of second-neighbor interactions on chaotic discrete breathers in a square lattice”, Chaos, Solitons & Fractals, 183 (2024), 114885  crossref
    3. I.V. Kosarev, S.A. Shcherbinin, A.A. Kistanov, R.I. Babicheva, E.A. Korznikova, S.V. Dmitriev, “An approach to evaluate the accuracy of interatomic potentials as applied to tungsten”, Computational Materials Science, 231 (2024), 112597  crossref
    4. O.V. Bachurina, R.T. Murzaev, S.A. Shcherbinin, A.A. Kudreyko, S.V. Dmitriev, D.V. Bachurin, “Delocalized nonlinear vibrational modes in Ni3Al”, Communications in Nonlinear Science and Numerical Simulation, 132 (2024), 107890  crossref
    5. Yu Mikhlin, K. Avramov, “Nonlinear Normal Modes of Vibrating Mechanical Systems: 10 Years of Progress”, Applied Mechanics Reviews, 76:5 (2024)  crossref
    6. George Chechin, Denis Ryabov, “Exact solutions of nonlinear dynamical equations for large-amplitude atomic vibrations in arbitrary monoatomic chains with fixed ends”, Communications in Nonlinear Science and Numerical Simulation, 120 (2023), 107176  crossref
    7. D. S. Ryabov, G. M. Chechin, E. K. Naumov, Yu. V. Bebikhov, E. A. Korznikova, S. V. Dmitriev, “One-component delocalized nonlinear vibrational modes of square lattices”, Nonlinear Dyn, 111:9 (2023), 8135  crossref
    8. O V Bachurina, R T Murzaev, S A Shcherbinin, A A Kudreyko, S V Dmitriev, D V Bachurin, “Multi-component delocalized nonlinear vibrational modes in nickel”, Modelling Simul. Mater. Sci. Eng., 31:7 (2023), 075009  crossref
    9. E. K. Naumov, Yu. V. Bebikhov, E. G. Ekomasov, E. G. Soboleva, S. V. Dmitriev, “Discrete breathers in square lattices from delocalized nonlinear vibrational modes”, Phys. Rev. E, 107:3 (2023)  crossref
    10. A. S. Semenov, M. N. Semenova, Yu. V. Bebikhov, M. V. Khazimullin, “Simulation of Molecular-Dynamics Processes in 2D and 3D Crystalline Structures”, Tech. Phys., 67:6 (2022), 538  crossref
    11. Levi C. Felix, Raphael M. Tromer, Cristiano F. Woellner, Chandra S. Tiwary, Douglas S. Galvao, “Mechanical response of pentadiamond: A DFT and molecular dynamics study”, Physica B: Condensed Matter, 629 (2022), 413576  crossref
    12. Alina Y. Morkina, Dmitry V. Bachurin, Sergey V. Dmitriev, Aleksander S. Semenov, Elena A. Korznikova, “Modulational Instability of Delocalized Modes in fcc Copper”, Materials, 15:16 (2022), 5597  crossref
    13. S.A. Shcherbinin, K.A. Krylova, G.M. Chechin, E.G. Soboleva, S.V. Dmitriev, “Delocalized nonlinear vibrational modes in fcc metals”, Communications in Nonlinear Science and Numerical Simulation, 104 (2022), 106039  crossref
    14. Rita I. Babicheva, Alexander S. Semenov, Stepan A. Shcherbinin, Elena A. Korznikova, Aleksey A. Kudreyko, Priyanka Vivegananthan, Kun Zhou, Sergey V. Dmitriev, “Effect of the stiffness of interparticle bonds on properties of delocalized nonlinear vibrational modes in an fcc lattice”, Phys. Rev. E, 105:6 (2022)  crossref
    15. Leysan Galiakhmetova, Alexander Semenov, MATHEMATICS EDUCATION AND LEARNING, 2633, MATHEMATICS EDUCATION AND LEARNING, 2022, 020028  crossref
    16. Rita I. Babicheva, Alexander S. Semenov, Elvira G. Soboleva, Aleksey A. Kudreyko, Kun Zhou, Sergey V. Dmitriev, “Discrete breathers in a triangular β -Fermi-Pasta-Ulam-Tsingou lattice”, Phys. Rev. E, 103:5 (2021)  crossref
    17. O. V. Bachurina, A. A. Kudreyko, “Two-component localized vibrational modes in fcc metals”, Eur. Phys. J. B, 94:11 (2021)  crossref
    18. K.A. Krylova, I.P. Lobzenko, A.S. Semenov, A.A. Kudreyko, S.V. Dmitriev, “Spherically localized discrete breathers in bcc metals V and Nb”, Computational Materials Science, 180 (2020), 109695  crossref
    19. Denis S. Ryabov, George M. Chechin, Abhisek Upadhyaya, Elena A. Korznikova, Vladimir I. Dubinko, Sergey V. Dmitriev, “Delocalized nonlinear vibrational modes of triangular lattices”, Nonlinear Dyn, 102:4 (2020), 2793  crossref
    20. Alexander Semenov, Ramil Murzaev, Yuri Bebikhov, Aleksey Kudreyko, Sergey Dmitriev, “New types of one-dimensional discrete breathers in a two-dimensional lattice”, Lett. Mater., 10:2 (2020), 185  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025