Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2020, Volume 62, Issue 5, Pages 748–751
DOI: https://doi.org/10.21883/FTT.2020.05.49238.01M
(Mi ftt8430)
 

This article is cited in 18 scientific papers (total in 18 papers)

International conference ''Phase transitions, critical and nonlinear phenomena in condensed matter'', Makhachkala, September 15-20, 2019
Magnetism

Degradation of the magnetocaloric effect in Ni49.3Mn40.4In10.3 in a cyclic magnetic field

A. M. Alieva, A. B. Batdalova, L. N. Khanova, A. V. Mashirovb, E. T. Dilmievab, V. V. Koledovb, V. G. Shavrovb

a Daghestan Institute of Physics after Amirkhanov, Makhachkala, Russia
b Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow
Abstract: The direct measurements of the magnetocaloric effect ΔTad in the Heusler alloy Ni49.3Mn40.4In10.3 have been carried out in cyclic magnetic fields with amplitudes to 8 T. The maximum values of the magnetocaloric effect are 5.29 K in the martensite–austenite transition region and 3.39 K in the region of the magnetic phase transition in the austenite phase. A long-term action of a cyclic magnetic field is shown to lead to a marked decrease in the value of the magnetocaloric effect in the region of the magnetostructural martensite–austenite transition. The initial properties are recovered after the complete transition of the sample to the austenite phase. The phenomenon observed in this study restricts the application of these materials in the magnetic cooling technology.
Keywords: magnetocaloric effect, Heusler alloys, cyclic magnetic fields, degradation, cooling technology.
Funding agency Grant number
Russian Science Foundation 18-12-00415
This work was supported by the Russian Science Foundation, project no. 18-12-00415.
Received: 30.12.2019
Revised: 30.12.2019
Accepted: 10.01.2020
English version:
Physics of the Solid State, 2020, Volume 62, Issue 5, Pages 837–840
DOI: https://doi.org/10.1134/S1063783420050030
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. V. Mashirov, E. T. Dilmieva, V. V. Koledov, V. G. Shavrov, “Degradation of the magnetocaloric effect in Ni49.3Mn40.4In10.3 in a cyclic magnetic field”, Fizika Tverdogo Tela, 62:5 (2020), 748–751; Phys. Solid State, 62:5 (2020), 837–840
Citation in format AMSBIB
\Bibitem{AliBatKha20}
\by A.~M.~Aliev, A.~B.~Batdalov, L.~N.~Khanov, A.~V.~Mashirov, E.~T.~Dilmieva, V.~V.~Koledov, V.~G.~Shavrov
\paper Degradation of the magnetocaloric effect in Ni$_{49.3}$Mn$_{40.4}$In$_{10.3}$ in a cyclic magnetic field
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 5
\pages 748--751
\mathnet{http://mi.mathnet.ru/ftt8430}
\crossref{https://doi.org/10.21883/FTT.2020.05.49238.01M}
\elib{https://elibrary.ru/item.asp?id=42905985}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 5
\pages 837--840
\crossref{https://doi.org/10.1134/S1063783420050030}
Linking options:
  • https://www.mathnet.ru/eng/ftt8430
  • https://www.mathnet.ru/eng/ftt/v62/i5/p748
  • This publication is cited in the following 18 articles:
    1. A. A. Amirov, A. M. Chirkova, A. S. Volegov, A. S. Komlev, N. V. Baranov, A. M. Aliev, “Degradation of the Magnetocaloric Effect in Fe48Rh52 Alloys under Cyclic Magnetic Field”, Bull. Russ. Acad. Sci. Phys., 2025  crossref
    2. Adler Gamzatov, Nurizhat Abdulkadirova, Kamil Kamilov, Akhmed Batdalov, Akhmed Aliev, Piotr Gebara, Hu Zhang, “The role of Mn in the stabilization of adiabatic temperature changes of LaFe11.2-xMnxCo0.7Si1.1 alloys in an alternating magnetic field”, Rare Met., 2025  crossref
    3. Akhmed M. Aliev, Adler G. Gamzatov, Zaur Z. Alisultanov, “Phase shift in AC magnetocaloric effect measurements as an indicator of the order of magnetic phase transitions”, Phys. Rev. B, 110:6 (2024)  crossref
    4. Konstantin A. Kolesov, Irek I. Musabirov, Dmitriy D. Kuznetsov, Vladimir G. Shavrov, Alexey V. Mashirov, “Experimental Brayton cycle of a cryogenic magnetic refrigerator based on GdNi2 alloy”, International Journal of Heat and Mass Transfer, 235 (2024), 126120  crossref
    5. A. M. Aliev, A. G. Gamzatov, “Magnetocaloric Effect in Alternating Magnetic Fields: A Review”, Phys. Metals Metallogr., 125:14 (2024), 1901  crossref
    6. I. I. Musabirov, R. Yu. Gaifullin, I. M. Safarov, R. M. Galeyev, D. D. Afonichev, K. K. Kirilyuk, V. V. Koledov, A. V. Mashirov, R. R. Mulyukov, “Influence of Si on the Structure and Martensitic Transformation in Deformed Ni–Mn–Ga Alloys”, Fizika metallov i metallovedenie, 124:11 (2023), 1129  crossref
    7. R. Yu. Gaifullin, A. B. Gadzhiev, A. M. Aliev, S. V. Taskaev, I, I. Musabirov, “Magnetocaloric Effect in a Ni2.25Mn0.75Ga0.93Si0.07 Alloy”, Radiotekhnika i elektronika, 68:4 (2023), 346  crossref
    8. A.M. Aliev, A.G. Gamzatov, N.Z. Abdulkadirova, P. Gebara, “Magnetocaloric properties of La0.9Pr0.1Fe11.2Co0.7Si1.1 compound through direct measurements under cyclic magnetic fields up to 30 Hz”, International Journal of Refrigeration, 151 (2023), 146  crossref
    9. P. A. Igoshev, “Magnetocaloric Effect and Phase Separation: Theory and Prospects”, Phys. Metals Metallogr., 124:11 (2023), 1112  crossref
    10. A. G. Gamzatov, A. B. Batdalov, Sh. K. Khizriev, A. M. Aliev, A. G. Varzaneh, P. Kameli, “High frequency dependence of the magnetocaloric effect in the Ni47Mn40Sn13 alloy: direct measurement”, J Mater Sci, 58:20 (2023), 8503  crossref
    11. Ruslan Gaifullin, Kirill Kirilyuk, Ilfat Safarov, Irek Musabirov, “Structure of Ni44.4Mn36.2Sn14.9Cu4.5 alloy applicable for thermomechanical treatment”, Lett. Mater., 13:2 (2023), 164  crossref
    12. D. D. Kuznetsov, E. I. Kuznetsova, A. V. Mashirov, A. S. Loshachenko, D. V. Danilov, V. I. Mitsiuk, A. S. Kuznetsov, V. G. Shavrov, V. V. Koledov, P. Ari-Gur, “Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In”, Nanomaterials, 13:8 (2023), 1385  crossref
    13. I. I. Musabirov, R. Yu. Gaifullin, I. M. Safarov, R. M. Galeev, D. D. Afonichev, K. K. Kirilyuk, V. V. Koledov, A. V. Mashirov, R. R. Mulyukov, “The Structure and Martensitic Transformation of Deformed Ni-Mn-Ga Alloys”, Phys. Metals Metallogr., 124:11 (2023), 1174  crossref
    14. P. A. Igoshev, “Magnetocalorical Effect and Phase Separation: Theory and Perspectives”, Fizika metallov i metallovedenie, 124:11 (2023), 1065  crossref
    15. R. Yu. Gaifullin, A. B. Gadzhiev, A. M. Aliev, S. V. Taskaev, I. I. Musabirov, “Magnetocaloric Effect in a Ni2.25Mn0.75Ga0.93Si0.07 Alloy”, J. Commun. Technol. Electron., 68:4 (2023), 407  crossref
    16. V. V. Sokolovskiy, O. N. Miroshkina, V. D. Buchelnikov, “Review of Modern Theoretical Approaches for Study of Magnetocaloric Materials”, Phys. Metals Metallogr., 123:4 (2022), 319  crossref
    17. I. I. Musabirov, I. M. Safarov, R. M. Galeyev, D. D. Afonichev, R. Y. Gaifullin, V. S. Kalashnikov, E. T. Dilmieva, V. V. Koledov, S. V. Taskaev, R. R. Mulyukov, “Influence of Multi-Axial Isothermal Forging on the Stability of Martensitic Transformation in a Heusler Ni-Mn-Ga Alloy”, Trans Indian Inst Met, 74:10 (2021), 2481  crossref
    18. A. M. Aliev, L. N. Khanov, A. G. Gamzatov, A. B. Batdalov, D. R. Kurbanova, K. I. Yanushkevich, G. A. Govor, “Giant magnetocaloric effect in MnAs1-xPx in a cyclic magnetic field: Lattice and magnetic contributions and degradation of the effect”, Applied Physics Letters, 118:7 (2021)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025