Abstract:
The relaxation of the remanent magnetization of antiferromagnetically ordered ferrihydrite nanoparticles at the exchange bias effect implemented in these systems has been investigated. The magnetization relaxation depends logarithmically on time, which is typical of the thermally activated hoppings of particle magnetic moments through the potential barriers caused by the magnetic anisotropy. The barrier energy obtained by processing of the remanent magnetization relaxation data under the field cooling conditions significantly exceeds the barrier energy under standard (zero field cooling) conditions. The observed difference points out the possibility of using the remanent magnetization relaxation to analyze the mechanisms responsible for the exchange bias effect in antiferromagnetic nanoparticles and measure the parameters of the exchange coupling of magnetic subsystems in such objects.
Citation:
D. A. Balaev, A. A. Krasikov, A. D. Balaev, S. V. Stolyar, V. P. Ladygina, R. S. Iskhakov, “Features of relaxation of the remanent magnetization of antiferromagnetic nanoparticles by the example of ferrihydrite”, Fizika Tverdogo Tela, 62:7 (2020), 1043–1049; Phys. Solid State, 62:7 (2020), 1172–1178
\Bibitem{BalKraBal20}
\by D.~A.~Balaev, A.~A.~Krasikov, A.~D.~Balaev, S.~V.~Stolyar, V.~P.~Ladygina, R.~S.~Iskhakov
\paper Features of relaxation of the remanent magnetization of antiferromagnetic nanoparticles by the example of ferrihydrite
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 7
\pages 1043--1049
\mathnet{http://mi.mathnet.ru/ftt8371}
\crossref{https://doi.org/10.21883/FTT.2020.07.49469.038}
\elib{https://elibrary.ru/item.asp?id=43800524}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 7
\pages 1172--1178
\crossref{https://doi.org/10.1134/S1063783420070033}
Linking options:
https://www.mathnet.ru/eng/ftt8371
https://www.mathnet.ru/eng/ftt/v62/i7/p1043
This publication is cited in the following 4 articles:
S. A. Lachenkov, V. A. Vlasenko, A. Yu. Tsvetkov, M. A. Kononov, “Paramagnetic Meissner Effect in Superconducting Rhodium Borides with and without a Magnetic Subsystem”, Inorg Mater, 60:6 (2024), 731
Igor S. Poperechny, “Longitudinal remagnetization of uniaxial antiferromagnetic nanoparticles: the role of spontaneous magnetic moment”, Phil. Trans. R. Soc. A., 380:2217 (2022)
Yu.V. Knyazev, O.P. Ikkert, S.V. Semenov, M.N. Volochaev, M.S. Molokeev, M.S. Platunov, E.V. Khramov, A.A. Dubrovskiy, N.P. Shestakov, E.D. Smorodina, O.V. Karnachuk, D.A. Balaev, “Superparamagnetic blocking and magnetic interactions in nanoferrihydrite adsorbed on biomineralized nanorod-shaped Fe3S4 crystallites”, Journal of Alloys and Compounds, 923 (2022), 166346
Yu.V. Knyazev, D.A. Balaev, S.V. Stolyar, A.A. Krasikov, O.A. Bayukov, M.N. Volochaev, R.N. Yaroslavtsev, V.P. Ladygina, D.A. Velikanov, R.S. Iskhakov, “Interparticle magnetic interactions in synthetic ferrihydrite: Mössbauer spectroscopy and magnetometry study of the dynamic and static manifestations”, Journal of Alloys and Compounds, 889 (2021), 161623