Loading [MathJax]/jax/output/SVG/config.js
Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2020, Volume 62, Issue 7, Pages 1008–1016
DOI: https://doi.org/10.21883/FTT.2020.07.49464.029
(Mi ftt8366)
 

This article is cited in 9 scientific papers (total in 9 papers)

Superconductivity

Model of the behavior of a granular HTS in an external magnetic field: temperature evolution of the magnetoresistance hysteresis

S. V. Semenovab, D. A. Balaevab

a L. V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk
b Siberian Federal University, Krasnoyarsk
Abstract: A model for describing the magnetoresistance behavior in a granular high-temperature superconductor (HTS) that has been developed in the last decade explains a fairly extraordinary form of the hysteretic $R(H)$ dependences at $T=\operatorname{const}$ and their hysteretic features, including the local maximum, the negative magnetoresistance region, and the local minimum. In the framework of this model, the effective field $\mathbf{B}_{\operatorname{eff}}$ in the intergrain medium has been considered, which represents a superposition of the external field and the field induced by the magnetic moments of HTS grains. This field can be written in the form $\mathbf{B}_{\operatorname{eff}}(H)=\mathbf{H}+4\pi\alpha\mathbf{M}(H)$, where $\mathbf{M}(H)$ is the experimental field dependence of the magnetization and $\alpha$ is the parameter of crowding of the magnetic induction lines in the intergrain medium. Therefore, the magnetoresistance is a function of not simply an external field, but also the “internal” effective field $R(H)=f(\mathbf{B}_{\operatorname{eff}}(H))$. The magnetoresistance of the granular YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ HTS has been investigated in a wide temperature range. The experimental hysteretic $R(H)$ dependences obtained in the high-temperature range (77–90 K) are well explained using the developed model and the parameter $\alpha$ is 20–25. However, at a temperature of 4.2 K, no local extrema are observed, although the expression for $\mathbf{B}_{\operatorname{eff}}(H))$ predicts them and the parameter $\alpha$ somewhat increases ($\sim$ 30–35) at this temperature. An additional factor that must be taken into account in this model can be the redistribution of the microscopic current trajectories, which also affects the dissipation in the intergrain medium. At low temperatures under the strong magnetic flux compression ($\alpha\sim$ 30–35), the microscopic trajectories of the current $\mathbf{I}_m$ can change and tunneling through the neighboring grain is preferred, but the angle between $\mathbf{I}_m$ and $\mathbf{B}_{\operatorname{eff}}$ will be noticeably smaller than 90$^\circ$, although the external (and effective) field direction is perpendicular to the macroscopic current direction.
Keywords: granular HTS, magnetoresistance hysteresis, grain boundaries.
Received: 13.02.2020
Revised: 13.02.2020
Accepted: 18.02.2020
English version:
Physics of the Solid State, 2020, Volume 62, Issue 7, Pages 1136–1144
DOI: https://doi.org/10.1134/S1063783420070239
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Semenov, D. A. Balaev, “Model of the behavior of a granular HTS in an external magnetic field: temperature evolution of the magnetoresistance hysteresis”, Fizika Tverdogo Tela, 62:7 (2020), 1008–1016; Phys. Solid State, 62:7 (2020), 1136–1144
Citation in format AMSBIB
\Bibitem{SemBal20}
\by S.~V.~Semenov, D.~A.~Balaev
\paper Model of the behavior of a granular HTS in an external magnetic field: temperature evolution of the magnetoresistance hysteresis
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 7
\pages 1008--1016
\mathnet{http://mi.mathnet.ru/ftt8366}
\crossref{https://doi.org/10.21883/FTT.2020.07.49464.029}
\elib{https://elibrary.ru/item.asp?id=43800519}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 7
\pages 1136--1144
\crossref{https://doi.org/10.1134/S1063783420070239}
Linking options:
  • https://www.mathnet.ru/eng/ftt8366
  • https://www.mathnet.ru/eng/ftt/v62/i7/p1008
  • This publication is cited in the following 9 articles:
    1. D. A Balaev, S. V Semenov, D. M Gokhfel'd, M. I Petrov, “KOLLAPS MALOY PETLI MAGNITNOGO GISTEREZISA GRANULYaRNOGO VYSOKOTEMPERATURNOGO SVERKhPROVODNIKA YBa2Cu3O7-δ”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 165:2 (2024), 258  crossref
    2. Ana Champi, Christian E Precker, Pablo D Esquinazi, “Hints of granular superconductivity in natural graphite verified by trapped flux transport measurements”, New J. Phys., 25:9 (2023), 093029  crossref
    3. D. A. Balaev, S. V. Semenov, D. M. Gokhfeld, “Developing a Concept of an Effective Field in the Intergrain Medium of a Granular Superconductor: Effect of the Intragrain Meissner Currents and Abrikosov Vortices Trapped in Grains on the Magnetotransport Properties of a Y-Ba-Cu-O Granular HTS”, J Supercond Nov Magn, 36:7-9 (2023), 1631  crossref
    4. J. E. Hirsch, “Granular Superconductivity in Hydrides Under Pressure”, J Supercond Nov Magn, 35:10 (2022), 2731  crossref
    5. J. E. Hirsch, “Granular Superconductivity in Hydrides Under Pressure”, SSRN Journal, 2022  crossref
    6. S. V. Semenov, D. M. Gokhfeld, K. Yu. Terent'ev, D. A. Balaev, “Mechanisms of the magnetoresistance hysteresis in a granular HTS with the paramagnetic contribution by the example of HoBa$_{2}$Cu$_{3}$O$_{7-\delta}$”, Phys. Solid State, 63:12 (2021), 1785–1794  mathnet  mathnet  crossref  crossref
    7. D. A. Balaev, S. V. Semenov, D. M. Gokhfeld, “New Evidence of Interaction Between Grain and Boundaries Subsystems in Granular High-Temperature Superconductors”, J Supercond Nov Magn, 34:4 (2021), 1067  crossref
    8. S. V. Semenov, D. A. Balaev, M. I. Petrov, “Universal behavior and temperature evolution of the magnetoresistance hysteresis in granular high-temperature superconductors Y-Ba-Cu-O”, Phys. Solid State, 63:7 (2021), 1069–1080  mathnet  mathnet  crossref  crossref
    9. A. I. Podlivaev, I. A. Rudnev, “Comparative analysis of the magnetic force characteristics of the permanent magnet- and superconducting ribbon-based magnetic lines”, Phys. Solid State, 63:12 (2021), 1757–1764  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :24
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025