Abstract:
A model for describing the magnetoresistance behavior in a granular high-temperature superconductor (HTS) that has been developed in the last decade explains a fairly extraordinary form of the hysteretic $R(H)$ dependences at $T=\operatorname{const}$ and their hysteretic features, including the local maximum, the negative magnetoresistance region, and the local minimum. In the framework of this model, the effective field $\mathbf{B}_{\operatorname{eff}}$ in the intergrain medium has been considered, which represents a superposition of the external field and the field induced by the magnetic moments of HTS grains. This field can be written in the form $\mathbf{B}_{\operatorname{eff}}(H)=\mathbf{H}+4\pi\alpha\mathbf{M}(H)$, where $\mathbf{M}(H)$ is the experimental field dependence of the magnetization and $\alpha$ is the parameter of crowding of the magnetic induction lines in the intergrain medium. Therefore, the magnetoresistance is a function of not simply an external field, but also the “internal” effective field $R(H)=f(\mathbf{B}_{\operatorname{eff}}(H))$. The magnetoresistance of the granular YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ HTS has been investigated in a wide temperature range. The experimental hysteretic $R(H)$ dependences obtained in the high-temperature range (77–90 K) are well explained using the developed model and the parameter $\alpha$ is 20–25. However, at a temperature of 4.2 K, no local extrema are observed, although the expression for $\mathbf{B}_{\operatorname{eff}}(H))$ predicts them and the parameter $\alpha$ somewhat increases ($\sim$ 30–35) at this temperature. An additional factor that must be taken into account in this model can be the redistribution of the microscopic current trajectories, which also affects the dissipation in the intergrain medium. At low temperatures under the strong magnetic flux compression ($\alpha\sim$ 30–35), the microscopic trajectories of the current $\mathbf{I}_m$ can change and tunneling through the neighboring grain is preferred, but the angle between $\mathbf{I}_m$ and $\mathbf{B}_{\operatorname{eff}}$ will be noticeably smaller than 90$^\circ$, although the external (and effective) field direction is perpendicular to the macroscopic current direction.
Citation:
S. V. Semenov, D. A. Balaev, “Model of the behavior of a granular HTS in an external magnetic field: temperature evolution of the magnetoresistance hysteresis”, Fizika Tverdogo Tela, 62:7 (2020), 1008–1016; Phys. Solid State, 62:7 (2020), 1136–1144
\Bibitem{SemBal20}
\by S.~V.~Semenov, D.~A.~Balaev
\paper Model of the behavior of a granular HTS in an external magnetic field: temperature evolution of the magnetoresistance hysteresis
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 7
\pages 1008--1016
\mathnet{http://mi.mathnet.ru/ftt8366}
\crossref{https://doi.org/10.21883/FTT.2020.07.49464.029}
\elib{https://elibrary.ru/item.asp?id=43800519}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 7
\pages 1136--1144
\crossref{https://doi.org/10.1134/S1063783420070239}
Linking options:
https://www.mathnet.ru/eng/ftt8366
https://www.mathnet.ru/eng/ftt/v62/i7/p1008
This publication is cited in the following 9 articles:
D. A Balaev, S. V Semenov, D. M Gokhfel'd, M. I Petrov, “KOLLAPS MALOY PETLI MAGNITNOGO GISTEREZISA GRANULYaRNOGO VYSOKOTEMPERATURNOGO SVERKhPROVODNIKA YBa2Cu3O7-δ”, Žurnal èksperimentalʹnoj i teoretičeskoj fiziki, 165:2 (2024), 258
Ana Champi, Christian E Precker, Pablo D Esquinazi, “Hints of granular superconductivity in natural graphite verified by trapped flux transport measurements”, New J. Phys., 25:9 (2023), 093029
D. A. Balaev, S. V. Semenov, D. M. Gokhfeld, “Developing a Concept of an Effective Field in the Intergrain Medium of a Granular Superconductor: Effect of the Intragrain Meissner Currents and Abrikosov Vortices Trapped in Grains on the Magnetotransport Properties of a Y-Ba-Cu-O Granular HTS”, J Supercond Nov Magn, 36:7-9 (2023), 1631
J. E. Hirsch, “Granular Superconductivity in Hydrides Under Pressure”, J Supercond Nov Magn, 35:10 (2022), 2731
J. E. Hirsch, “Granular Superconductivity in Hydrides Under Pressure”, SSRN Journal, 2022
S. V. Semenov, D. M. Gokhfeld, K. Yu. Terent'ev, D. A. Balaev, “Mechanisms of the magnetoresistance hysteresis in a granular HTS with the paramagnetic contribution by the example of HoBa$_{2}$Cu$_{3}$O$_{7-\delta}$”, Phys. Solid State, 63:12 (2021), 1785–1794
D. A. Balaev, S. V. Semenov, D. M. Gokhfeld, “New Evidence of Interaction Between Grain and Boundaries Subsystems in Granular High-Temperature Superconductors”, J Supercond Nov Magn, 34:4 (2021), 1067
S. V. Semenov, D. A. Balaev, M. I. Petrov, “Universal behavior and temperature evolution of the magnetoresistance hysteresis in granular high-temperature superconductors Y-Ba-Cu-O”, Phys. Solid State, 63:7 (2021), 1069–1080
A. I. Podlivaev, I. A. Rudnev, “Comparative analysis of the magnetic force characteristics of the permanent magnet- and superconducting ribbon-based magnetic lines”, Phys. Solid State, 63:12 (2021), 1757–1764