Abstract:
Green's function method together with the tight-binding approach are used to get analytical estimations for the electron bands dispersions. The parabolic approximation is proposed which permits to find carriers effective masses and quantum capacitance. With the use of the Koster–Slater and Haldane–Anderson models the problem on the local states of vacancies is considered. Analytical estimates of the specific phonon frequencies and elastic constants are given. The obtained results are compared with the data available.
\Bibitem{Dav21}
\by S.~Yu.~Davydov
\paper Model estimations of fluorografene properties
\jour Fizika Tverdogo Tela
\yr 2021
\vol 63
\issue 1
\pages 158--162
\mathnet{http://mi.mathnet.ru/ftt8212}
\crossref{https://doi.org/10.21883/FTT.2021.01.50416.179}
\elib{https://elibrary.ru/item.asp?id=44830688}
\transl
\jour Phys. Solid State
\yr 2021
\vol 63
\issue 1
\pages 183--187
\crossref{https://doi.org/10.1134/S1063783421010078}
Linking options:
https://www.mathnet.ru/eng/ftt8212
https://www.mathnet.ru/eng/ftt/v63/i1/p158
This publication is cited in the following 2 articles:
S. Yu. Davydov, “Model of graphane-like h-AB–C compounds”, Phys. Solid State, 63:3 (2021), 505–510
S. Yu. Davydov, O. V. Posrednik, “Model of a “Two-dimensional metal–graphene-like compound” junction: consideration for interaction between the components”, Semiconductors, 55:7 (2021), 595–600