Abstract:
Using computer-based simulation methods, phase transitions in the three-dimensional weakly diluted Potts model with the spin state number $q=5$ are studied. Systems with linear dimensions $L\times L\times L=N$, $L$ = 10–40, at spin concentrations $p$ = 1.00 and 0.90 are considered. The obtained numerical data indicate that introduction of a minor disorder in the form of nonmagnetic impurities ($p$ = 0.90) into the three-dimensional Potts model with $q=5$ is not significant for the first-order phase transition.
Keywords:
impurity, Potts model, Monte Carlo method, thermodynamic parameters, critical phenomena.
Citation:
A. K. Murtazaev, A. B. Babaev, “Phase transitions in a three-dimensional weakly diluted potts model with $q=5$”, Fizika Tverdogo Tela, 63:10 (2021), 1644–1647; Phys. Solid State, 63:12 (2021), 1884–1888
\Bibitem{MurBab21}
\by A.~K.~Murtazaev, A.~B.~Babaev
\paper Phase transitions in a three-dimensional weakly diluted potts model with $q=5$
\jour Fizika Tverdogo Tela
\yr 2021
\vol 63
\issue 10
\pages 1644--1647
\mathnet{http://mi.mathnet.ru/ftt8002}
\crossref{https://doi.org/10.21883/FTT.2021.10.51417.047}
\elib{https://elibrary.ru/item.asp?id=46598584}
\transl
\jour Phys. Solid State
\yr 2021
\vol 63
\issue 12
\pages 1884--1888
\crossref{https://doi.org/10.1134/S1063783421100267}
Linking options:
https://www.mathnet.ru/eng/ftt8002
https://www.mathnet.ru/eng/ftt/v63/i10/p1644
This publication is cited in the following 3 articles:
G. Ya. Ataeva, A. B. Babaev, A. K. Murtazaev, “Calculating the Relative Variances of Magnetization,
Heat Capacity, and Susceptibility in a Two-Dimensional Weakly
Diluted Four-Component Potts Model”, Fizika metallov i metallovedenie, 124:7 (2023), 584
G. Ya. Ataeva, A. B. Babaev, A. K. Murtazaev, “Calculating the Relative Variances of Magnetization, Heat Capacity, and Susceptibility in a Two-Dimensional Weakly Diluted Four-Component Potts Model”, Phys. Metals Metallogr., 124:7 (2023), 660
J. D. Dekhkonov, “On $(k_0)$-translation-invariant and $(k_0)$-periodic Gibbs measures for Potts model on Cayley tree”, Ufa Math. J., 14:4 (2022), 42–55