Abstract:
The effect of radiation defects on the critical current of a layered anisotropic superconductor has been investigated by numerical methods. Model defects simulating various cases of radiation damage to a superconductor as a result of electron and ion irradiation are considered. The obtained dependences of the critical current on the magnetic field show that the greatest pinning gain with equal irradiation fluence is given by defects forming 3D conical regions inside the superconductor. It is shown that in a weakly anisotropic superconductor, conical defects enhance the critical current more efficiently than in a strongly anisotropic one. The interaction of a vortex lattice with radiation defects is considered, vortex configurations arising under the action of the self-field of the transport current are obtained.
Keywords:
HTSС, pinning, Abrikosov vortices, radiation defects, Monte Carlo method.
Citation:
A. N. Maksimova, V. A. Kashurnikov, A. N. Moroz, I. A. Rudnev, “Influence of radiation defects of different type on the critical current of layered anisotropic superconductor”, Fizika Tverdogo Tela, 63:11 (2021), 1830–1836
\Bibitem{MakKasMor21}
\by A.~N.~Maksimova, V.~A.~Kashurnikov, A.~N.~Moroz, I.~A.~Rudnev
\paper Influence of radiation defects of different type on the critical current of layered anisotropic superconductor
\jour Fizika Tverdogo Tela
\yr 2021
\vol 63
\issue 11
\pages 1830--1836
\mathnet{http://mi.mathnet.ru/ftt7955}
\crossref{https://doi.org/10.21883/FTT.2021.11.51584.169}
\elib{https://elibrary.ru/item.asp?id=46636895}
Linking options:
https://www.mathnet.ru/eng/ftt7955
https://www.mathnet.ru/eng/ftt/v63/i11/p1830
This publication is cited in the following 1 articles: