Loading [MathJax]/jax/output/CommonHTML/jax.js
Fizika Tverdogo Tela
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika Tverdogo Tela:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika Tverdogo Tela, 2020, Volume 62, Issue 7, Page 1054 (Mi ftt10184)  

This article is cited in 13 scientific papers (total in 13 papers)

Magnetism

The influence of various divalent metal ions (Mn2+, Co2+, and Cu2+) substitution on the structural and magnetic properties of nickel-zinc spinel ferrite

S. Mazen, N. I. Abu-Elsaad, A. S. Nawara

Magnetic Semiconductor Laboratory, Physics department, Faculty of Science, Zagazig University, Zagazig, Egypt
Full-text PDF (32 kB) Citations (13)
Abstract: Ni0.7xZn0.3MxFe2O4 (M = Mn2+, Co2+, and Cu2+; x = 0.0, 0.1, 0.3, 0.5, and 0.7) spinel-type ferrite were fabricated through citrate technique. The X-ray diffraction analysis disclosed the creation of the cubic phase spinel structure in all prepared samples, except for the high concentration of Mn (x = 0.7). As the concentration of dopant ions increased, the structural parameters, such as lattice constant, particle size, X-ray density, bulk density, and percentage porosity showed interesting changes. The experimental lattice parameter was found in the range from 0.839 to 0.843 nm for the three investigated series. The average particle size ranged from 52 to 107 nm. The density decreased with the addition of Mn and Co, while it improved considerably with the increment of Cu content. Besides, the percentage porosity for Ni–Zn–Cu ferrite was lower than those for the Ni–Zn–Mn and Ni–Zn–Co ferrite series. Several magnetic properties were studied at room temperature. Magnetization curves were measured in the range of magnetizing field up to 6000 Am1. The magnetization was studied at a constant magnetic field (4500 Am1) and it was found to rise with Mn2+ ions content up to x = 0.3 followed by a subsequent decline at x = 0.5. Furthermore, a monotonic decrease in the magnetization was observed by the incorporation of Co into Ni–Zn ferrite, while an increase was noticed for Cu-substituted samples. Among the three investigated series, the Ni–Zn–Cu ferrite series exhibited the highest magnetization, making it appropriate for high-density recording media. The initial permeability (μi) was studied as a function of temperature for all samples. The Curie temperature TC was estimated from the μi(T) plot and was determined to decrease with the upsurge in the content of substitute ions (Mn2+, Co2+, and Cu2+).
Keywords: spinels, citrate method, SEM, magnetic properties.
Received: 11.02.2020
Revised: 13.02.2020
Accepted: 13.02.2020
English version:
Physics of the Solid State, 2020, Volume 62, Issue 7, Pages 1183–1194
DOI: https://doi.org/10.1134/S106378342007015X
Document Type: Article
Language: English
Citation: S. Mazen, N. I. Abu-Elsaad, A. S. Nawara, “The influence of various divalent metal ions (Mn2+, Co2+, and Cu2+) substitution on the structural and magnetic properties of nickel-zinc spinel ferrite”, Fizika Tverdogo Tela, 62:7 (2020), 1054; Phys. Solid State, 62:7 (2020), 1183–1194
Citation in format AMSBIB
\Bibitem{MazAbuNaw20}
\by S.~Mazen, N.~I.~Abu-Elsaad, A.~S.~Nawara
\paper The influence of various divalent metal ions (Mn$^{2+}$, Co$^{2+}$, and Cu$^{2+}$) substitution on the structural and magnetic properties of nickel-zinc spinel ferrite
\jour Fizika Tverdogo Tela
\yr 2020
\vol 62
\issue 7
\pages 1054
\mathnet{http://mi.mathnet.ru/ftt10184}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 7
\pages 1183--1194
\crossref{https://doi.org/10.1134/S106378342007015X}
Linking options:
  • https://www.mathnet.ru/eng/ftt10184
  • https://www.mathnet.ru/eng/ftt/v62/i7/p1054
  • This publication is cited in the following 13 articles:
    1. Sanjali Navelkar, Komal Salkar, Lakshangy Charya, V. M. S. Verenkar, “Effect of Zn Substitution on Properties of Ni0.6-xZnxMn0.4Fe2O4(x = 0.0,0.2,0.4,0.6) and to Study its Antibacterial Activity as a Potential Antibacterial Agent”, J Clust Sci, 36:1 (2025)  crossref
    2. Arti A. Ingle, Akash V. Fulari, Rameshwar B. Borade, S.B. Kadam, V. D. Mote, A. B. Kadam, Sagar E. Shirsath, R. H. Kadam, “Impact of Copper Substitution on the Structural Refinement, Magnetic Behaviour, and Dielectric Response of Ni–Zn Spinel Ferrites”, Phys. Solid State, 67:2 (2025), 148  crossref
    3. N. I. Abu-Elsaad, A. S. Nawara, “Effect of Cu substitution on magnetic and photocatalytic properties of Mn–ZnFe2O4 nanoparticles”, J Mater Sci, 59:10 (2024), 4167  crossref
    4. Fangjia Zhao, Jianwei Li, Arunabhiram Chutia, Longxiang Liu, Liqun Kang, Feili Lai, Haobo Dong, Xuan Gao, Yeshu Tan, Tianxi Liu, Ivan P. Parkin, Guanjie He, “Highly stable manganese oxide cathode material enabled by Grotthuss topochemistry for aqueous zinc ion batteries”, Energy Environ. Sci., 17:4 (2024), 1497  crossref
    5. Omar H. Abd-Elkader, Nasrallah M. Deraz, Lotfi Aleya, “Effects of Zinc Substitution on the Microstructural and Magnetic Characteristics of Cubic Symmetry Nickel Ferrite System”, Symmetry, 15:5 (2023), 975  crossref
    6. D.P. Sherstyuk, V.E. Zhivulin, Denis Vinnik, “Correlation of the Chemical Composition and Structural Characteristics in the Partially Substituted Spinel Ferrites”, MSF, 1052 (2022), 160  crossref
    7. Maha Mostafa, Oday Saleh, Ahmed Maher Henaish, Samir Ali Abd El-Kaream, Ryad Ghazy, Osama M. Hemeda, Ali M. Dorgham, Hanan Al-Ghamdi, Aljawhara H. Almuqrin, M. I. Sayyed, Sergei V. Trukhanov, Ekaterina L. Trukhanova, Alex V. Trukhanov, Di Zhou, Moustafa A. Darwish, “Structure, Morphology and Electrical/Magnetic Properties of Ni-Mg Nano-Ferrites from a New Perspective”, Nanomaterials, 12:7 (2022), 1045  crossref
    8. N.I. Abu-Elsaad, S.A. Mazen, A.Y. Sleem, “Production of Cr3+ substituted Li–Zn nanocrystalline ferrite by citrate method: Studies on structure, cation occupancy, elastic, optical and magnetic performance”, Ceramics International, 48:10 (2022), 14210  crossref
    9. S.A. Mazen, A.S. Nawara, N.I. Abu-Elsaad, “Investigation of dielectric behavior in Ni0.7-xZn0.3MxFe2O4 (M=Mn/Co/Cu) ferrites by impedance spectroscopy”, Ceramics International, 47:7 (2021), 9856  crossref
    10. D. A. Vinnik, S. A. Gudkova, V. E. Zhivulin, E. A. Trofimov, “Ferrite-Based Solid Solutions: Structure Types, Preparation, Properties, and Potential Applications”, Inorg Mater, 57:11 (2021), 1109  crossref
    11. N.I. Abu-Elsaad, S.A. Mazen, A.S. Nawara, “Tertiary Ni0.7-xZn0.3MxFe2O4 (M=Mn, Co, and Cu) spinel ferrites: Electrical and dielectric properties”, Journal of Alloys and Compounds, 856 (2021), 157794  crossref
    12. Dandan Luo, Jinhai Yuan, Jing Zhou, Mingming Zou, Rui Xi, Yu Qin, Qiqi Shen, Shiyue Hu, Jing Xu, Ming Nie, Di Xu, Bo Wu, “Synthesis of samarium doped ferrite and its enhanced photocatalytic degradation of perfluorooctanoic acid (PFOA)”, Optical Materials, 122 (2021), 111636  crossref
    13. S. Ouyahia, A. Rais, B. Bozzo, K. Taibi, A. Addou, “Cations distribution by Rietveld refinement and magnetic properties of MgCrxFe2-xO4 spinel ferrites”, Appl. Phys. A, 126:8 (2020)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika Tverdogo Tela Fizika Tverdogo Tela
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025