Abstract:
The expressions for the spontaneous polar contribution δnSi to the principal values of the refractive index due to the quadratic electro-optic effect in ferroelectrics have been considered within the phenomenological approach taking into account the polarization fluctuations. A method has been proposed for calculating the magnitude and temperature dependence of the root-mean-square fluctuations of the polarization (short-range local polar order) Psh=⟨P2fl⟩1/2 below the ferroelectric transition temperature Tc from temperature changes in the spontaneous polar contribution δnSi(T) if the average spontaneous polarization Ps=⟨P⟩ characterizing the long-range order is determined from independent measurements (for example, from dielectric hysteresis loops). For the case of isotropic fluctuations, the proposed method has made it possible to calculate Psh and Ps only from refractometric measurements. It has been shown that, upon interferometric measurements, the method developed in this work allows calculating Psh and Ps directly from the measured temperature and electric-field changes in the relative optical path (the specific optical retardation) of the light.
Citation:
P. A. Markovin, V. A. Trepakov, A. K. Tagantsev, A. Deineka, D. A. Andreev, “Contribution of spontaneous polarization and its fluctuations to refraction of light in ferroelectrics”, Fizika Tverdogo Tela, 58:1 (2016), 131–135; Phys. Solid State, 58:1 (2016), 134–139
\Bibitem{MarTreTag16}
\by P.~A.~Markovin, V.~A.~Trepakov, A.~K.~Tagantsev, A.~Deineka, D.~A.~Andreev
\paper Contribution of spontaneous polarization and its fluctuations to refraction of light in ferroelectrics
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 1
\pages 131--135
\mathnet{http://mi.mathnet.ru/ftt10119}
\elib{https://elibrary.ru/item.asp?id=25668755}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 1
\pages 134--139
\crossref{https://doi.org/10.1134/S1063783416010200}
Linking options:
https://www.mathnet.ru/eng/ftt10119
https://www.mathnet.ru/eng/ftt/v58/i1/p131
This publication is cited in the following 5 articles:
P. A. Markovin, V. A. Trepakov, M. E. Guzhva, O. E. Kvyatkovskii, A. G. Razdobarin, M. Itoh, “A crystal optical study of short range polar order in the ferroelectric phase: doped incipient ferroelectrics”, Ferroelectrics, 538:1 (2019), 35
P. A. Markovin, V. A. Trepakov, M. E. Guzhva, O. E. Kvyatkovskii, D. A. Andreev, “Thermo-Optical Study of Short-Range Polar Order in a Ferroelectric Phase: The Ca2+ Impurity-Induced Ferroelectric Phase in SrTiO3”, Bull. Russ. Acad. Sci. Phys., 82:3 (2018), 273
P. A. Markovin, V. A. Trepakov, M. E. Guzhva, A. Dejneka, A. G. Razdobarin, O. E. Kvyatkovskii, “Thermooptical and dielectric studies of a calcium-induced ferroelectric phase in a SrTiO3 incipient ferroelectric”, Phys. Solid State, 60:9 (2018), 1793–1806
P A Markovin, V A Trepakov, M E Guzhva, A G Razdobarin, A K Tagantsev, D A Andreev, A Dejneka, “Short- and long-range polar order contributions to the Ferroelectric phase of Ca2+doped SrTiO3”, Mater. Res. Express, 3:11 (2016), 115705
P. A. Markovin, M. E. Guzhva, “Electro-optic effect in SrTiO3 and Sr1−xCaxTiO3 (x = 0.014)”, Phys. Solid State, 58:1 (2016), 140–143