Abstract:
The expressions for the spontaneous polar contribution $\delta n_{i}^{S}$ to the principal values of the refractive index due to the quadratic electro-optic effect in ferroelectrics have been considered within the phenomenological approach taking into account the polarization fluctuations. A method has been proposed for calculating the magnitude and temperature dependence of the root-mean-square fluctuations of the polarization (short-range local polar order) $P_{\operatorname{sh}}=\langle P^{2}_{\operatorname{fl}}\rangle^{1/2}$ below the ferroelectric transition temperature $T_{c}$ from temperature changes in the spontaneous polar contribution $\delta n_{i}^{S}(T)$ if the average spontaneous polarization $P_{\operatorname{s}}=\langle P\rangle$ characterizing the long-range order is determined from independent measurements (for example, from dielectric hysteresis loops). For the case of isotropic fluctuations, the proposed method has made it possible to calculate $P_{\operatorname{sh}}$ and $P_{\operatorname{s}}$ only from refractometric measurements. It has been shown that, upon interferometric measurements, the method developed in this work allows calculating $P_{\operatorname{sh}}$ and $P_{\operatorname{s}}$ directly from the measured temperature and electric-field changes in the relative optical path (the specific optical retardation) of the light.
Citation:
P. A. Markovin, V. A. Trepakov, A. K. Tagantsev, A. Deineka, D. A. Andreev, “Contribution of spontaneous polarization and its fluctuations to refraction of light in ferroelectrics”, Fizika Tverdogo Tela, 58:1 (2016), 131–135; Phys. Solid State, 58:1 (2016), 134–139
\Bibitem{MarTreTag16}
\by P.~A.~Markovin, V.~A.~Trepakov, A.~K.~Tagantsev, A.~Deineka, D.~A.~Andreev
\paper Contribution of spontaneous polarization and its fluctuations to refraction of light in ferroelectrics
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 1
\pages 131--135
\mathnet{http://mi.mathnet.ru/ftt10119}
\elib{https://elibrary.ru/item.asp?id=25668755}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 1
\pages 134--139
\crossref{https://doi.org/10.1134/S1063783416010200}
Linking options:
https://www.mathnet.ru/eng/ftt10119
https://www.mathnet.ru/eng/ftt/v58/i1/p131
This publication is cited in the following 5 articles:
P. A. Markovin, V. A. Trepakov, M. E. Guzhva, O. E. Kvyatkovskii, A. G. Razdobarin, M. Itoh, “A crystal optical study of short range polar order in the ferroelectric phase: doped incipient ferroelectrics”, Ferroelectrics, 538:1 (2019), 35
P. A. Markovin, V. A. Trepakov, M. E. Guzhva, O. E. Kvyatkovskii, D. A. Andreev, “Thermo-Optical Study of Short-Range Polar Order in a Ferroelectric Phase: The Ca2+ Impurity-Induced Ferroelectric Phase in SrTiO3”, Bull. Russ. Acad. Sci. Phys., 82:3 (2018), 273
P. A. Markovin, V. A. Trepakov, M. E. Guzhva, A. Dejneka, A. G. Razdobarin, O. E. Kvyatkovskii, “Thermooptical and dielectric studies of a calcium-induced ferroelectric phase in a SrTiO$_{3}$ incipient ferroelectric”, Phys. Solid State, 60:9 (2018), 1793–1806
P A Markovin, V A Trepakov, M E Guzhva, A G Razdobarin, A K Tagantsev, D A Andreev, A Dejneka, “Short- and long-range polar order contributions to the Ferroelectric phase of Ca2+doped SrTiO3”, Mater. Res. Express, 3:11 (2016), 115705
P. A. Markovin, M. E. Guzhva, “Electro-optic effect in SrTiO$_{3}$ and Sr$_{1-x}$Ca$_{x}$TiO$_{3}$ ($x$ = 0.014)”, Phys. Solid State, 58:1 (2016), 140–143