Abstract:
The methods of the density functional theory were used for the first time for the simulation of discrete breathers in graphene. It is demonstrated that breathers can exist with frequencies lying in the gap of the phonon spectrum, induced by uniaxial tension of a monolayer graphene sheet in the “zigzag” direction (axis XX), polarized in the “armchair” direction (axis YY). The found gap breathers are highly localized dynamic objects, the core of which is formed by two adjacent carbon atoms located on the YY axis. The atoms surrounding the core vibrate at much lower amplitudes along both the axes (XX and YY). The dependence of the frequency of these breathers on amplitude is found, which shows a soft type of nonlinearity. No breathers of this type were detected in the gap induced by stretching along the YY axis. It is shown that the breather vibrations may be approximated by the Morse oscillators, the parameters of which are determined from ab initio calculations. The results are of fundamental importance, as molecular dynamics calculations based on empirical potentials cannot serve as a reliable proof of the existence of breathers in crystals.
Citation:
I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Yu. A. Baimova, E. A. Korznikova, S. V. Dmitriev, “Ab initio simulation of gap discrete breathers in strained graphene”, Fizika Tverdogo Tela, 58:3 (2016), 616–622; Phys. Solid State, 58:3 (2016), 633–639
\Bibitem{LobCheBez16}
\by I.~P.~Lobzenko, G.~M.~Chechin, G.~S.~Bezuglova, Yu.~A.~Baimova, E.~A.~Korznikova, S.~V.~Dmitriev
\paper Ab initio simulation of gap discrete breathers in strained graphene
\jour Fizika Tverdogo Tela
\yr 2016
\vol 58
\issue 3
\pages 616--622
\mathnet{http://mi.mathnet.ru/ftt10062}
\elib{https://elibrary.ru/item.asp?id=25668951}
\transl
\jour Phys. Solid State
\yr 2016
\vol 58
\issue 3
\pages 633--639
\crossref{https://doi.org/10.1134/S1063783416030203}
Linking options:
https://www.mathnet.ru/eng/ftt10062
https://www.mathnet.ru/eng/ftt/v58/i3/p616
This publication is cited in the following 44 articles:
Juan F R Archilla, Jānis Bajārs, Yusuke Doi, Masayuki Kimura, “A semiclassical model for charge transfer along ion chains in silicates”, J. Phys.: Conf. Ser., 2769:1 (2024), 012015
Juan F. R. Archilla, Jānis Bajārs, “Spectral Properties of Exact Polarobreathers in Semiclassical Systems”, Axioms, 12:5 (2023), 437
Alexander Semenov, Maria Semenova, Yuriy Bebikhov, Ilya Yakushev, Smart Innovation, Systems and Technologies, 247, Robotics, Machinery and Engineering Technology for Precision Agriculture, 2022, 437
A. Upadhyaya, M.N. Semenova, A.A. Kudreyko, S.V. Dmitriev, “Chaotic discrete breathers and their effect on macroscopic properties of triangular lattice”, Communications in Nonlinear Science and Numerical Simulation, 112 (2022), 106541
Ayrat M. Bayazitov, Ramil T. Murzaev, Yuri V. Bebikhov, MATHEMATICS EDUCATION AND LEARNING, 2633, MATHEMATICS EDUCATION AND LEARNING, 2022, 020032
Ramil Murzaev, Alina Morkina, Ilyas Tuvalev, Vladimir L. Derbov, Laser Physics, Photonic Technologies, and Molecular Modeling, 2022, 25
Leysan Galiakhmetova, Karina Krylova, Igor Kosarev, MATHEMATICS EDUCATION AND LEARNING, 2633, MATHEMATICS EDUCATION AND LEARNING, 2022, 020015
A. Yu. Morkina, M. Singh, Yu. V. Bebikhov, E. A. Korznikova, S. V. Dmitriev, “Variation of the Specific Heat in the Fermi–Pasta–Ulam Chain due to Energy Localization”, Phys. Solid State, 64:8 (2022), 446
R. R. Timiryaev, K. S. Nazarov, G. F. Korznikova, R. R. Kabirov, G. R. Khalikova, R. H. Khisamov, R. U. Shayakhmetov, R. R. Mulyukov, MATHEMATICS EDUCATION AND LEARNING, 2633, MATHEMATICS EDUCATION AND LEARNING, 2022, 020012
Mohit Singh, Alina Y. Morkina, Elena A. Korznikova, Volodymyr I. Dubinko, Dmitry A. Terentiev, Daxing Xiong, Oleg B. Naimark, Vakhid A. Gani, Sergey V. Dmitriev, “Effect of Discrete Breathers on the Specific Heat of a Nonlinear Chain”, J Nonlinear Sci, 31:1 (2021)
R. T. Murzaev, A. S. Semenov, A. I. Potekaev, M. D. Starostenkov, P. V. Zakharov, V. V. Kulagina, S. V. Dmitriev, “Spatially Localized Oscillations in Low-Stability States of Metal Systems”, Russ Phys J, 64:2 (2021), 293
I R Sunagatova, A M Subkhangulova, M N Semenova, D I Borisov, A S Semenov, S V Dmitriev, “Properties of one-dimensional nonlinear vibrational modes in triangular lattice with Lennard-Jones interactions”, IOP Conf. Ser.: Mater. Sci. Eng., 1008:1 (2020), 012073
Elena A. Korznikova, Alina Y. Morkina, Mohit Singh, Anton M. Krivtsov, Vitaly A. Kuzkin, Vakhid A. Gani, Yuri V. Bebikhov, Sergey V. Dmitriev, “Effect of discrete breathers on macroscopic properties of the Fermi-Pasta-Ulam chain”, Eur. Phys. J. B, 93:7 (2020)
K.A. Krylova, I.P. Lobzenko, A.S. Semenov, A.A. Kudreyko, S.V. Dmitriev, “Spherically localized discrete breathers in bcc metals V and Nb”, Computational Materials Science, 180 (2020), 109695
K. A. Krylova, L. R. Safina, “Hydrostatic compression as the way of property improvement of crumpled graphene: atomistic simulation”, J. Phys.: Conf. Ser., 1435:1 (2020), 012064
A M Eremin, P V Zakharov, M D Starostenkov, “Analysis of the statistical characteristics of the discrete breater in CuPt7 crystal by the method of molecular dynamics by GPU-calculations”, J. Phys.: Conf. Ser., 1615:1 (2020), 012006
Alexander Semenov, Ramil Murzaev, Yuri Bebikhov, Aleksey Kudreyko, Sergey Dmitriev, “New types of one-dimensional discrete breathers in a two-dimensional lattice”, Lett. Mater., 10:2 (2020), 185
Mikhail Dmitrievich Starostenkov, Pavel Vasilevich Zakharov, Nikolai Nikolaevich Medvedev, “Diskretnye brizery v GTsK i GTsT-kristallakh”, Izvestiya AltGU, 2019, no. 4(108), 49
Elena A. Korznikova, Stepan A. Shcherbinin, Denis S. Ryabov, George M. Chechin, Evgeny G. Ekomasov, Elham Barani, Kun Zhou, Sergey V. Dmitriev, “Delocalized Nonlinear Vibrational Modes in Graphene: Second Harmonic Generation and Negative Pressure”, Physica Status Solidi (b), 256:1 (2019)
Dina U. Abdullina, Maria N. Semenova, Aleksander S. Semenov, Elena A. Korznikova, Sergey V. Dmitriev, “Stability of delocalized nonlinear vibrational modes in graphene lattice”, Eur. Phys. J. B, 92:11 (2019)