Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 6, Pages 193–211 (Mi fpm996)  

This article is cited in 7 scientific papers (total in 7 papers)

The Maslov–Poisson measure and Feynman formulas for the solution of the Dirac equation

N. N. Shamarov

M. V. Lomonosov Moscow State University
Full-text PDF (210 kB) Citations (7)
References:
Abstract: As the main step, the method used by V. P. Maslov for representing a solution of the initial-value problem for the classical Schrödinger equation and admitting an application to the Dirac equation includes the construction of a cylindrical countably-additive measure (which is an analog of the Poisson distribution) on a certain space of functions (= trajectories in the impulse space) whose Fourier transform coincides with the factor in the formula representing the solution of the Schrödinger equation by the integral in the so-called cylindrical Feynman (pseudo)measure (in the trajectory space in the configurational space for the classical system). On the other hand, in the Maslov formula for the solution of the Schrödinger equation, the exponential factor is (with accuracy up to a shift) the Fourier transform of the Feynman pseudomeasure. In the case of the Dirac equation, historically, for the first time, there arise the formulas for the impulse representation that use countably-additive functional distributions of the Poisson–Maslov measure type but with noncommuting (matrix) values. The paper finds generalized measures whose Fourier transforms coincide with an analog of the exponential factor under the integral sign in the Maslov-type formula for the Dirac equation and the integrals with respect to which yield solutions of the Cauchy problem for this equation in the configurational space.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 151, Issue 1, Pages 2767–2780
DOI: https://doi.org/10.1007/s10948-008-0172-z
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: N. N. Shamarov, “The Maslov–Poisson measure and Feynman formulas for the solution of the Dirac equation”, Fundam. Prikl. Mat., 12:6 (2006), 193–211; J. Math. Sci., 151:1 (2008), 2767–2780
Citation in format AMSBIB
\Bibitem{Sha06}
\by N.~N.~Shamarov
\paper The Maslov--Poisson measure and Feynman formulas for the solution of the Dirac equation
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 6
\pages 193--211
\mathnet{http://mi.mathnet.ru/fpm996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314139}
\zmath{https://zbmath.org/?q=an:1151.81354}
\elib{https://elibrary.ru/item.asp?id=11143815}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 151
\issue 1
\pages 2767--2780
\crossref{https://doi.org/10.1007/s10948-008-0172-z}
\elib{https://elibrary.ru/item.asp?id=13571444}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449104018}
Linking options:
  • https://www.mathnet.ru/eng/fpm996
  • https://www.mathnet.ru/eng/fpm/v12/i6/p193
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:704
    Full-text PDF :223
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024