Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 5, Pages 65–74 (Mi fpm974)  

On the notion of quantum Lyapunov exponent

M. F. Kondrat'evaa, T. A. Osbornb

a Memorial University of Newfoundland
b University of Manitoba
References:
Abstract: Classical chaos refers to the property of trajectories to diverge exponentially as time $t\to\infty$. It is characterized by a positive Lyapunov exponent. There are many different descriptions of quantum chaos. One description related to the notion of generalized (quantum) Lyapunov exponent is based either on qualitative physical considerations or on the so-called symplectic tomography map. The purpose of this note is to show how the definition of quantum Lyapunov exponent naturally arises in the framework of the Moyal phase space formulation of quantum mechanics, and is based on the notions of quantum trajectories and the family of quantizers. The role of the Heisenberg uncertainty principle in the statement of the criteria for quantum chaos is made explicit.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 150, Issue 6, Pages 2500–2506
DOI: https://doi.org/10.1007/s10958-008-0148-3
Bibliographic databases:
UDC: 530.2+517.91
Language: Russian
Citation: M. F. Kondrat'eva, T. A. Osborn, “On the notion of quantum Lyapunov exponent”, Fundam. Prikl. Mat., 12:5 (2006), 65–74; J. Math. Sci., 150:6 (2008), 2500–2506
Citation in format AMSBIB
\Bibitem{KonOsb06}
\by M.~F.~Kondrat'eva, T.~A.~Osborn
\paper On the notion of quantum Lyapunov exponent
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 5
\pages 65--74
\mathnet{http://mi.mathnet.ru/fpm974}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314115}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 6
\pages 2500--2506
\crossref{https://doi.org/10.1007/s10958-008-0148-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449087779}
Linking options:
  • https://www.mathnet.ru/eng/fpm974
  • https://www.mathnet.ru/eng/fpm/v12/i5/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:391
    Full-text PDF :151
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024