Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 5, Pages 75–82 (Mi fpm973)  

This article is cited in 1 scientific paper (total in 1 paper)

Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles

A. N. Konenkov

M. V. Lomonosov Moscow State University
Full-text PDF (121 kB) Citations (1)
References:
Abstract: The Dirichlet and Neumann problems are considered in the $n$-dimensional cube and in a right angle. The right-hand side is assumed to be bounded, and the boundary conditions are assumed to be zero. We obtain a priori bounds for solutions in the Zygmund space, which is wider than the Lipschitz space $C^{1,1}$ but narrower that the Hölder space $C^{1,\alpha}$, $0<\alpha<1$. Also, the first and second boundary problems are considered for the heat equation with similar conditions. It is shown that the solutions belongs to the corresponding Zygmund space.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 150, Issue 6, Pages 2507–2512
DOI: https://doi.org/10.1007/s10958-008-0149-2
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: A. N. Konenkov, “Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles”, Fundam. Prikl. Mat., 12:5 (2006), 75–82; J. Math. Sci., 150:6 (2008), 2507–2512
Citation in format AMSBIB
\Bibitem{Kon06}
\by A.~N.~Konenkov
\paper Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 5
\pages 75--82
\mathnet{http://mi.mathnet.ru/fpm973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314116}
\zmath{https://zbmath.org/?q=an:1151.35325}
\elib{https://elibrary.ru/item.asp?id=11143792}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 6
\pages 2507--2512
\crossref{https://doi.org/10.1007/s10958-008-0149-2}
\elib{https://elibrary.ru/item.asp?id=13915602}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449161971}
Linking options:
  • https://www.mathnet.ru/eng/fpm973
  • https://www.mathnet.ru/eng/fpm/v12/i5/p75
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:2338
    Full-text PDF :1542
    References:101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024