Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 4, Pages 65–77 (Mi fpm959)  

Helmholtz–Kirchhoff method and boundary control of a plane flow

A. S. Demidov

M. V. Lomonosov Moscow State University
References:
Abstract: We consider the problem of the description of the eddy singularities behind an obstruction $S$ flowed around and their dependence (and hence, the dependence of flow functionals, e.g., the resistance force) on parameters determining the boundary $\partial S$ of the obstacle and/or flow characteristics on $\partial S$. We propose a new approach to these problems for a flat potential flow of an incompressible liquid, which is based on ideas of the Helmholtz–Kirchhoff method and the Euler equation $d\vec V/dt=\nabla p$ under the assumption that the flow has a point vortices concentrated at the required centers $z_k^*$, where the potential $u$ of the velocity $\vec V=\overline{dw}/dz$ ($w=u+iv\in\mathbb C$, $z=x+iy$) has a singularity proportional to $\mathrm{arg}(z-z_k^*)$. In the case of a $K$-segment polygonal obstacle and a (chosen in some way) number $L$ of point vortices taken into account in calculations, the flow can be reconstructed by the so-called characteristic values of the potential. It occurs that, being the components of the required vector function
$$ \sigma\colon t\mapsto(\sigma_1(t),\ldots,\sigma_M(t))\in\mathbb R^M, \ \ \text{where}\ \ M =M(K,L), $$
they are connected by certain functional equations corresponding to geometric properties of the obstacle, intensity of vortices, frequency of their breakdown from the obstacle, etc. These equations involve the Helmholtz–Kirchhoff function $\ln(dz/dw)$ specified on the $L$-fold Riemannian surface $Q=Q(\sigma)\ni w$. This surface and the boundary conditions for the function $\ln(dz/dw)$ are parameterized by the function $\sigma$ and by a control defined on $\partial S$. As for the pressure $p$, it is defined by the Cauchy–Lagrange equation for the Euler equation.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 150, Issue 5, Pages 2335–2343
DOI: https://doi.org/10.1007/s10958-008-0133-x
Bibliographic databases:
UDC: 519.977+517.54
Language: Russian
Citation: A. S. Demidov, “Helmholtz–Kirchhoff method and boundary control of a plane flow”, Fundam. Prikl. Mat., 12:4 (2006), 65–77; J. Math. Sci., 150:5 (2008), 2335–2343
Citation in format AMSBIB
\Bibitem{Dem06}
\by A.~S.~Demidov
\paper Helmholtz--Kirchhoff method and boundary control of a~plane flow
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 4
\pages 65--77
\mathnet{http://mi.mathnet.ru/fpm959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314146}
\zmath{https://zbmath.org/?q=an:1151.76401}
\elib{https://elibrary.ru/item.asp?id=11143776}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 5
\pages 2335--2343
\crossref{https://doi.org/10.1007/s10958-008-0133-x}
\elib{https://elibrary.ru/item.asp?id=14259996}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42149095412}
Linking options:
  • https://www.mathnet.ru/eng/fpm959
  • https://www.mathnet.ru/eng/fpm/v12/i4/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025