|
Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 4, Pages 3–19
(Mi fpm956)
|
|
|
|
This article is cited in 25 scientific papers (total in 25 papers)
Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity
S. N. Antontseva, S. I. Shmarevb a University of Beira Interior
b Universidad de Oviedo
Abstract:
We prove the existence and uniqueness of weak solutions of the Dirichlet problem for the nonlinear degenerate parabolic equations
$$
u_{t}=\operatorname{div}(a|u|^{\gamma(x,t)}\nabla u)+\mathbf{b}|u|^{\gamma(x,t)/2}\nabla u-c|u|^{\sigma (x,t)-2}u+d,
$$
where $a$, $\mathbf{b}$, $c$, and $d$ are given functions of the arguments $x$, $t$, and $u(x,t)$, and the exponents of nonlinearity $\gamma(x,t)$ and $\sigma(x,t)$ are known measurable and bounded functions of their arguments.
Citation:
S. N. Antontsev, S. I. Shmarev, “Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity”, Fundam. Prikl. Mat., 12:4 (2006), 3–19; J. Math. Sci., 150:5 (2008), 2289–2301
Linking options:
https://www.mathnet.ru/eng/fpm956 https://www.mathnet.ru/eng/fpm/v12/i4/p3
|
|