Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 3, Pages 669–700 (Mi fpm95)  

This article is cited in 27 scientific papers (total in 27 papers)

On the finite basis property of abstract $T$-spaces

A. V. Grishin

Moscow State Pedagogical University
References:
Abstract: Let $F=k\langle x_1,\dots,x_i,\dots\rangle$ be the free countably generated algebra over a field $k$ of the characteristic 0. A vector subspace $V$ of the algebra $F$ is called a $T$-space of $F$ if it is closed under substitutions. It is clear that an ideal $I$ of $F$ is a $T$-ideal if and only if $I$ is a $T$-space of $F$. The aim of this paper is to introduce the definition of the abstract $T$-space and to prove the finite basis property for some large class of $T$-spaces.
The main result of this paper is the following
Theorem. Let $I$ be a $T$-ideal of algebra $F$ which contains a Capelly polynomial. Then every $T$-space of $F/I$ is finitely based.
The statement of this theorem allows us to give a positive answer to the local Specht's problem (A. Kemer gave a positive answer to Specht's problem using another approach) and to the representability problem.
Received: 01.02.1995
Bibliographic databases:
UDC: 519.48
Language: Russian
Citation: A. V. Grishin, “On the finite basis property of abstract $T$-spaces”, Fundam. Prikl. Mat., 1:3 (1995), 669–700
Citation in format AMSBIB
\Bibitem{Gri95}
\by A.~V.~Grishin
\paper On the finite basis property of abstract $T$-spaces
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 3
\pages 669--700
\mathnet{http://mi.mathnet.ru/fpm95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1788550}
\zmath{https://zbmath.org/?q=an:0868.16017}
Linking options:
  • https://www.mathnet.ru/eng/fpm95
  • https://www.mathnet.ru/eng/fpm/v1/i3/p669
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024