Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 3, Pages 9–53 (Mi fpm947)  

This article is cited in 2 scientific papers (total in 2 papers)

Rational operators of the space of formal series

N. I. Dubrovin

Vladimir State University
Full-text PDF (428 kB) Citations (2)
References:
Abstract: The main result of this paper is the following theorem: the group ring of the universal covering $\mathbb G$ of the group $\mathrm{SL}(2,\mathbb R)$ is embeddable in a skew field $\mathbb D$ with valuation in the sense of Mathiak and the valuation ring is an exceptional chain order in the skew field $\mathbb D$, i.e., there exists a prime ideal that is not completely prime. In this ring, every divisorial right fractional ideal is principal, and the linearly ordered set of all divisorial fractional right ideals is isomorphic to the real line. This theorem is a consequence of the fact that the universal covering group $\mathbb G$ satisfies sufficient conditions for the embeddability of the group ring of a left ordered group in a skew field.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 3, Pages 1191–1223
DOI: https://doi.org/10.1007/s10958-008-0059-3
Bibliographic databases:
UDC: 512.8
Language: Russian
Citation: N. I. Dubrovin, “Rational operators of the space of formal series”, Fundam. Prikl. Mat., 12:3 (2006), 9–53; J. Math. Sci., 149:3 (2008), 1191–1223
Citation in format AMSBIB
\Bibitem{Dub06}
\by N.~I.~Dubrovin
\paper Rational operators of the space of formal series
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 3
\pages 9--53
\mathnet{http://mi.mathnet.ru/fpm947}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249705}
\zmath{https://zbmath.org/?q=an:1152.16034}
\elib{https://elibrary.ru/item.asp?id=9307289}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 3
\pages 1191--1223
\crossref{https://doi.org/10.1007/s10958-008-0059-3}
\elib{https://elibrary.ru/item.asp?id=14569760}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39049111518}
Linking options:
  • https://www.mathnet.ru/eng/fpm947
  • https://www.mathnet.ru/eng/fpm/v12/i3/p9
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :132
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024