Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 2, Pages 209–215 (Mi fpm945)  

This article is cited in 12 scientific papers (total in 12 papers)

The Jacobson radical of the Laurent series ring

A. A. Tuganbaev

Moscow Power Engineering Institute (Technical University)
References:
Abstract: For a large class of rings $A$ including all rings with right Krull dimension, it is proved that for every automorphism $\varphi$ of the ring $A$, the Jacobson radical of the skew Laurent series ring $A((x,\varphi))$ is nilpotent and coincides with $N((x,\varphi))$, where $N$ is the prime radical of the ring $A$. If $A/N$ is a ring of bounded index, then the Jacobson radical of the Laurent series ring $A((x))$ coincides with $N((x))$.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 2, Pages 1182–1186
DOI: https://doi.org/10.1007/s10958-008-0057-5
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “The Jacobson radical of the Laurent series ring”, Fundam. Prikl. Mat., 12:2 (2006), 209–215; J. Math. Sci., 149:2 (2008), 1182–1186
Citation in format AMSBIB
\Bibitem{Tug06}
\by A.~A.~Tuganbaev
\paper The Jacobson radical of the Laurent series ring
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 2
\pages 209--215
\mathnet{http://mi.mathnet.ru/fpm945}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249703}
\zmath{https://zbmath.org/?q=an:1161.16013}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 2
\pages 1182--1186
\crossref{https://doi.org/10.1007/s10958-008-0057-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38549144656}
Linking options:
  • https://www.mathnet.ru/eng/fpm945
  • https://www.mathnet.ru/eng/fpm/v12/i2/p209
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024