Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 2, Pages 119–141 (Mi fpm942)  

On multiple transitivity for products of sets of permutations

V. V. Mizerov
References:
Abstract: The study of multiple transitivity of products of sets of permutations on a set $\Omega$ is reduced to the study of products of matrices of small dimensions. For effective application of this approach we need some information about properties of equivalence relations defined on the Cartesian degree of the set $\Omega$. These properties are studied for relations induced by various groups.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 2, Pages 1119–1134
DOI: https://doi.org/10.1007/s10958-008-0051-y
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: V. V. Mizerov, “On multiple transitivity for products of sets of permutations”, Fundam. Prikl. Mat., 12:2 (2006), 119–141; J. Math. Sci., 149:2 (2008), 1119–1134
Citation in format AMSBIB
\Bibitem{Miz06}
\by V.~V.~Mizerov
\paper On multiple transitivity for products of sets of permutations
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 2
\pages 119--141
\mathnet{http://mi.mathnet.ru/fpm942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249697}
\zmath{https://zbmath.org/?q=an:1175.20002}
\elib{https://elibrary.ru/item.asp?id=9307281}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 2
\pages 1119--1134
\crossref{https://doi.org/10.1007/s10958-008-0051-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38549094044}
Linking options:
  • https://www.mathnet.ru/eng/fpm942
  • https://www.mathnet.ru/eng/fpm/v12/i2/p119
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024