Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 3, Pages 661–668 (Mi fpm94)  

This article is cited in 2 scientific papers (total in 2 papers)

On the general linear group over weak Noetherian associative algebras

I. Z. Golubchik

Bashkir State Pedagogical University
Full-text PDF (309 kB) Citations (2)
References:
Abstract: Let $R$ be a weak Noetherian algebra with unity element over an infinite field, $I$ an ideal in $R$, $n\geq3$, $E_n(R)$ the elementary subgroup in the general linear group $GL_n(R)$, $E_n(R,I)$ the normal subgroup in $E_n(R)$ generated by the elementary matrices $1+\lambda e_{ij}$, $\lambda\in I$, $1\leq i\neq j\leq n$, $GL_n(R,I)$ the kernel and $C_n(R,I)$ the preimage of the center of the homomorphism $GL_n(R)\to GL_n(R/I)$ respectively. It is proved that if $G$ is a subgroup of $GL_n(R)$, then it is normalized by $E_n(R)$ if and only if $E_n(R,F)\subseteq G\subseteq C_n(R,F)$ for some ideal $F$ of $R$; $[C_n(R,F),E_n(R)]=E_n(R,F)$ and in particular the groups $E_n(R)$ and $E_n(R,F)$ are normal in $GL_n(R)$ for all ideals $F$ of $R$.
Received: 01.04.1995
Bibliographic databases:
UDC: 512.544.6
Language: Russian
Citation: I. Z. Golubchik, “On the general linear group over weak Noetherian associative algebras”, Fundam. Prikl. Mat., 1:3 (1995), 661–668
Citation in format AMSBIB
\Bibitem{Gol95}
\by I.~Z.~Golubchik
\paper On the general linear group over weak Noetherian associative algebras
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 3
\pages 661--668
\mathnet{http://mi.mathnet.ru/fpm94}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1788549}
\zmath{https://zbmath.org/?q=an:0867.20037}
Linking options:
  • https://www.mathnet.ru/eng/fpm94
  • https://www.mathnet.ru/eng/fpm/v1/i3/p661
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024