Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 2, Pages 71–87 (Mi fpm935)  

This article is cited in 4 scientific papers (total in 4 papers)

Trisecant lemma for nonequidimensional varieties

J. Y. Kaminskia, A. Ya. Kanel-Belovb, M. Teicherc

a Holon Academic Institute of Technology
b Hebrew University of Jerusalem
c Bar-Ilan University, Department of Chemistry
Full-text PDF (218 kB) Citations (4)
References:
Abstract: Let $X$ be an irreducible projective variety over an algebraically closed field of characteristic zero. For $r \geq3$, if every $(r-2)$-plane $\overline{x_1,\dots,x_{r-1}}$, where the $x_i$ are generic points, also meets $X$ in a point $x_r$ different from $x_1,\dots,x_{r-1}$, then $X$ is contained in a linear subspace $L$ such that $\operatorname{codim}_L X \leq r-2$. In this paper, our purpose is to present another derivation of this result for $r=3$ and then to introduce a generalization to nonequidimensional varieties. For the sake of clarity, we shall reformulate our problem as follows. Let $Z$ be an equidimensional variety (maybe singular and/or reducible) of dimension $n$, other than a linear space, embedded into $\mathbb P^r$, where $r \geq n+1$. The variety of trisecant lines of $Z$, say $V_{1,3}(Z)$, has dimension strictly less than $2n$, unless $Z$ is included in an $(n+1)$-dimensional linear space and has degree at least 3, in which case $\dim V_{1,3}(Z) = 2n$. This also implies that if $\dim V_{1,3}(Z)=2n$, then $Z$ can be embedded in $\mathbb P^{n+1}$. Then we inquire the more general case, where $Z$ is not required to be equidimensional. In that case, let $Z$ be a possibly singular variety of dimension $n$, which may be neither irreducible nor equidimensional, embedded into $\mathbb P^r$, where $r\geq n+1$, and let $Y$ be a proper subvariety of dimension $k\geq1$. Consider now $S$ being a component of maximal dimension of the closure of $\{l \in\mathbb G(1,r)\mid\exists p\in Y,\ q_1,q_2\in Z\setminus Y,q_1,q_2,p\in l\}$. We show that $S$ has dimension strictly less than $n+k$, unless the union of lines in $S$ has dimension $n+1$, in which case $\dim S=n+k$. In the latter case, if the dimension of the space is strictly greater than $n+1$, then the union of lines in $S$ cannot cover the whole space. This is the main result of our paper. We also introduce some examples showing that our bound is strict.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 2, Pages 1087–1097
DOI: https://doi.org/10.1007/s10958-008-0047-7
Bibliographic databases:
UDC: 512.7
Language: Russian
Citation: J. Y. Kaminski, A. Ya. Kanel-Belov, M. Teicher, “Trisecant lemma for nonequidimensional varieties”, Fundam. Prikl. Mat., 12:2 (2006), 71–87; J. Math. Sci., 149:2 (2008), 1087–1097
Citation in format AMSBIB
\Bibitem{KamKanTei06}
\by J.~Y.~Kaminski, A.~Ya.~Kanel-Belov, M.~Teicher
\paper Trisecant lemma for nonequidimensional varieties
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 2
\pages 71--87
\mathnet{http://mi.mathnet.ru/fpm935}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249693}
\zmath{https://zbmath.org/?q=an:1146.14028}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 2
\pages 1087--1097
\crossref{https://doi.org/10.1007/s10958-008-0047-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38549176136}
Linking options:
  • https://www.mathnet.ru/eng/fpm935
  • https://www.mathnet.ru/eng/fpm/v12/i2/p71
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024