Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 2, Pages 17–38 (Mi fpm932)  

This article is cited in 2 scientific papers (total in 2 papers)

Almost completely decomposable groups with primary regulator quotients and their endomorphism rings

E. A. Blagoveshchenskaya

Saint-Petersburg State Polytechnical University
Full-text PDF (248 kB) Citations (2)
References:
Abstract: Let $X$ be a block-rigid almost completely decomposable group of ring type with regulator $A$ and $p$-primary regulator quotient $X/A$ such that $p^l=\exp X/A$ with natural $l>1$. From the well-known fact $p^l\operatorname{End}A\subset\operatorname{End}X\subset\operatorname{End}A$ it follows that $\operatorname{End}X=\operatorname{End}X\cap\operatorname{End}A$ and $p^l\operatorname{End}A=\operatorname{End}X\cap p^l\operatorname{End}A$. Generalizing these, we determine the chain $\operatorname{End}X=\mathcal E_A^{(l)}\subset\mathcal E_A^{(l-1)}\subset\mathcal E_A^{(l-2)}\subset\dots\subset\mathcal E_A^{(1)}\subset\mathcal E_A^{(0)}=\operatorname{End}A$, satisfying $p^{l-k}\mathcal E_A^{({k})}=\operatorname{End}X\cap p^{l-k}\operatorname{End}A$, and construct groups $X'_k$ and $\widetilde{X_k}$ such that $\mathcal E_A^{({k})}=\operatorname{Hom}(X'_k,\widetilde{X_k})$, where $k=1,2,\dots,l-1$.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 2, Pages 1047–1062
DOI: https://doi.org/10.1007/s10958-008-0044-x
Bibliographic databases:
UDC: 512.541+512.553.5
Language: Russian
Citation: E. A. Blagoveshchenskaya, “Almost completely decomposable groups with primary regulator quotients and their endomorphism rings”, Fundam. Prikl. Mat., 12:2 (2006), 17–38; J. Math. Sci., 149:2 (2008), 1047–1062
Citation in format AMSBIB
\Bibitem{Bla06}
\by E.~A.~Blagoveshchenskaya
\paper Almost completely decomposable groups with primary regulator quotients and their endomorphism rings
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 2
\pages 17--38
\mathnet{http://mi.mathnet.ru/fpm932}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249690}
\zmath{https://zbmath.org/?q=an:1160.20051}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 2
\pages 1047--1062
\crossref{https://doi.org/10.1007/s10958-008-0044-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38549092058}
Linking options:
  • https://www.mathnet.ru/eng/fpm932
  • https://www.mathnet.ru/eng/fpm/v12/i2/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :120
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024