Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 1, Pages 205–236 (Mi fpm928)  

Approximation of solutions of the Monge–Ampère equations by surfaces reduced to developable surfaces

L. B. Pereyaslavskaya

State Academy of Consumer Services
References:
Abstract: We consider an approximate construction of the surface $S$ being the graph of a $C^2$-smooth solution $z=z(x,y)$ of the parabolic Monge–Ampère equation
$$ (z_{xx}+a)(z_{yy}+b)-z_{xy}^2=0 $$
of a special form with the initial conditions
$$ z(x,0)=\varphi(x),\quad q(x,0)=\psi(x), $$
where $a=a(y)$ and $b=b(y)$ are given functions. In the method proposed, the desired solution is approximated by a sequence of $C^1$-smooth surfaces $\{S_n\}$ each of which consists of parts of surfaces reduced to developable surfaces. In this case, the projections of characteristics of the surface $S$ being curved lines in general are approximated by characteristic projections of the surfaces $S_{n}$ being polygonal lines composed of $n$ links. The results of these constructions are formulated in the theorem. Sufficient conditions for the convergence of the family of surfaces $S_{n}$ to the surface $S$ as $n\to\infty$ are presented; this allows one to construct a numerical solution of the problem with any accuracy given in advance.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 1, Pages 996–1020
DOI: https://doi.org/10.1007/s10958-008-0039-7
Bibliographic databases:
UDC: 517.956
Language: Russian
Citation: L. B. Pereyaslavskaya, “Approximation of solutions of the Monge–Ampère equations by surfaces reduced to developable surfaces”, Fundam. Prikl. Mat., 12:1 (2006), 205–236; J. Math. Sci., 149:1 (2008), 996–1020
Citation in format AMSBIB
\Bibitem{Per06}
\by L.~B.~Pereyaslavskaya
\paper Approximation of solutions of the Monge--Amp\`ere equations by surfaces reduced to developable surfaces
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 1
\pages 205--236
\mathnet{http://mi.mathnet.ru/fpm928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249685}
\zmath{https://zbmath.org/?q=an:1153.35326}
\elib{https://elibrary.ru/item.asp?id=9166890}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 1
\pages 996--1020
\crossref{https://doi.org/10.1007/s10958-008-0039-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349127670}
Linking options:
  • https://www.mathnet.ru/eng/fpm928
  • https://www.mathnet.ru/eng/fpm/v12/i1/p205
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :112
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024