Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 6, Pages 143–178 (Mi fpm891)  

On multiple integrals represented as a linear form in $1,\zeta(3),\zeta(5),\dots,\zeta(2k-1)$

V. Kh. Salikhova, A. I. Frolovichevb

a Bryansk Institute of Transport Engineering
b Bryansk State Technical University
References:
Abstract: A theorem on the presentability of a multiple integral as a linear form in $1,\zeta(3),\zeta(5),\dots,\zeta(2k-1)$ over $\mathbb Q$ is proved. This theorem refines the results recently obtained by D. Vasiliev, V. Zudilin, and S. Zlobin.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 146, Issue 2, Pages 5731–5758
DOI: https://doi.org/10.1007/s10958-007-0389-6
Bibliographic databases:
UDC: 511.36
Language: Russian
Citation: V. Kh. Salikhov, A. I. Frolovichev, “On multiple integrals represented as a linear form in $1,\zeta(3),\zeta(5),\dots,\zeta(2k-1)$”, Fundam. Prikl. Mat., 11:6 (2005), 143–178; J. Math. Sci., 146:2 (2007), 5731–5758
Citation in format AMSBIB
\Bibitem{SalFro05}
\by V.~Kh.~Salikhov, A.~I.~Frolovichev
\paper On multiple integrals represented as a~linear form in $1,\zeta(3),\zeta(5),\dots,\zeta(2k-1)$
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 6
\pages 143--178
\mathnet{http://mi.mathnet.ru/fpm891}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2204430}
\zmath{https://zbmath.org/?q=an:05358123}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 146
\issue 2
\pages 5731--5758
\crossref{https://doi.org/10.1007/s10958-007-0389-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34848869027}
Linking options:
  • https://www.mathnet.ru/eng/fpm891
  • https://www.mathnet.ru/eng/fpm/v11/i6/p143
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :151
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024