Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 3, Pages 581–612 (Mi fpm88)  

This article is cited in 1 scientific paper (total in 1 paper)

New examples of nonnegative trigonometric polynomials with integer coefficients

A. S. Belov

Ivanovo State University
References:
Abstract: In the paper it is proved that for any positive integer $n$ and any number $\lambda\geq1$ the following estimate holds:
$$ 2\lambda n^{\alpha}+\sum_{k=1}^{s}\Bigl[\lambda\left(\frac{n}{k}\right)^{\alpha}-1\Bigr]\cos(kx)>0 $$
for all $x$ and $s=0,\ldots,n$. Here the braces mean the integer part of a number, and $\alpha\in(0,1)$ is the unique root of the equation $\int_{0}^{3\pi/2}t^{-\alpha}\cos t\,dt=0$. It is proved also that for any positive integer $n$ and any numbers $q\geq2$ and $\lambda \geq sq^q$ the following estimate is true:
$$ 4\lambda n^{1/q}+\sum_{k=1}^{n}\Bigl[\lambda\Bigl(\left( \frac{n}{k}\right)^{1/q}-1\Bigr)+1\Bigl]\cos(kx)>0 $$
for all $x$. From these two main results and similar ones new estimates in some extremal problems connected with nonnegative trigonometric polynomials with integer coefficients are deduced.
Received: 01.04.1995
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. S. Belov, “New examples of nonnegative trigonometric polynomials with integer coefficients”, Fundam. Prikl. Mat., 1:3 (1995), 581–612
Citation in format AMSBIB
\Bibitem{Bel95}
\by A.~S.~Belov
\paper New examples of nonnegative trigonometric polynomials with integer coefficients
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 3
\pages 581--612
\mathnet{http://mi.mathnet.ru/fpm88}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1788544}
\zmath{https://zbmath.org/?q=an:0866.42001}
Linking options:
  • https://www.mathnet.ru/eng/fpm88
  • https://www.mathnet.ru/eng/fpm/v1/i3/p581
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :165
    References:80
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024