Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 5, Pages 99–105 (Mi fpm869)  

This article is cited in 1 scientific paper (total in 1 paper)

On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres

Sh. Kuroki

Osaka University
Full-text PDF (130 kB) Citations (1)
References:
Abstract: We construct a natural, continuous $\mathrm{SL}(3,\mathbb{R})$-action on $S^{4}$ which is an extension of the $\mathrm{SO}(3)$-action $\psi$ of Uchida. The construction is based on the Kuiper theorem asserting that the quotient space of $\mathbb{C}P(2)$ by complex conjugation is $S^{4}$. We also give a new proof of the Kuiper theorem.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 146, Issue 1, Pages 5518–5522
DOI: https://doi.org/10.1007/s10958-007-0365-1
Bibliographic databases:
UDC: 515.162.4+515.164.8
Language: Russian
Citation: Sh. Kuroki, “On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres”, Fundam. Prikl. Mat., 11:5 (2005), 99–105; J. Math. Sci., 146:1 (2007), 5518–5522
Citation in format AMSBIB
\Bibitem{Kur05}
\by Sh.~Kuroki
\paper On $\mathrm{SL}(3,\mathbb{R})$-actions on $4$-spheres
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 5
\pages 99--105
\mathnet{http://mi.mathnet.ru/fpm869}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2216856}
\zmath{https://zbmath.org/?q=an:1163.57025}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 146
\issue 1
\pages 5518--5522
\crossref{https://doi.org/10.1007/s10958-007-0365-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548734288}
Linking options:
  • https://www.mathnet.ru/eng/fpm869
  • https://www.mathnet.ru/eng/fpm/v11/i5/p99
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024