Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 4, Pages 127–152 (Mi fpm850)  

This article is cited in 12 scientific papers (total in 12 papers)

The Khovanov complex for virtual links

V. O. Manturov

M. V. Lomonosov Moscow State University
References:
Abstract: One of the most outstanding achievements of the modern knot theory is Khovanov's categorification of Jones polynomials. In the present paper, we construct the homology theory for virtual knots. An important obstruction to this theory (unlike the case of classical knots) is the nonorientability of “atoms”; an atom is a two-dimensional combinatorial object closely related with virtual link diagrams. The problem is solved directly for the field $\mathbb Z_{2}$, and also by using some geometrical constructions applied to atoms. We discuss a generalization proposed by Khovanov; he modifies the initial homology theory by using the Frobenius extension. We construct analogues of these theories for virtual knots, both algebraically and geometrically (by using atoms).
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 144, Issue 5, Pages 4451–4467
DOI: https://doi.org/10.1007/s10958-007-0284-1
Bibliographic databases:
UDC: 515.162.8
Language: Russian
Citation: V. O. Manturov, “The Khovanov complex for virtual links”, Fundam. Prikl. Mat., 11:4 (2005), 127–152; J. Math. Sci., 144:5 (2007), 4451–4467
Citation in format AMSBIB
\Bibitem{Man05}
\by V.~O.~Manturov
\paper The Khovanov complex for virtual links
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 4
\pages 127--152
\mathnet{http://mi.mathnet.ru/fpm850}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2192961}
\zmath{https://zbmath.org/?q=an:1165.57012}
\elib{https://elibrary.ru/item.asp?id=9084355}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 144
\issue 5
\pages 4451--4467
\crossref{https://doi.org/10.1007/s10958-007-0284-1}
\elib{https://elibrary.ru/item.asp?id=14581951}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547523721}
Linking options:
  • https://www.mathnet.ru/eng/fpm850
  • https://www.mathnet.ru/eng/fpm/v11/i4/p127
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024