Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 4, Pages 95–103 (Mi fpm845)  

Properly 3-realizable groups

M. Cardenas, F. F. Lasheras, A. Quintero

University of Seville
References:
Abstract: A finitely presented group $G$ is said to be properly 3-realizable if there exists a compact 2-polyhedron $K$ with $\pi_1(K)\cong G$ and whose universal cover has the proper homotopy type of a 3-manifold (with boundary). We discuss the behavior of this property with respect to amalgamated products, HNN-extensions, and direct products, as well as the independence with respect to the chosen 2-polyhedron. We also exhibit certain classes of groups satisfying this property: finitely generated Abelian groups, (classical) hyperbolic groups, and one-relator groups.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 144, Issue 5, Pages 4431–4436
DOI: https://doi.org/10.1007/s10958-007-0281-4
Bibliographic databases:
UDC: 515.162.3
Language: Russian
Citation: M. Cardenas, F. F. Lasheras, A. Quintero, “Properly 3-realizable groups”, Fundam. Prikl. Mat., 11:4 (2005), 95–103; J. Math. Sci., 144:5 (2007), 4431–4436
Citation in format AMSBIB
\Bibitem{CarLasQui05}
\by M.~Cardenas, F.~F.~Lasheras, A.~Quintero
\paper Properly 3-realizable groups
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 4
\pages 95--103
\mathnet{http://mi.mathnet.ru/fpm845}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2192958}
\zmath{https://zbmath.org/?q=an:1149.57002}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 144
\issue 5
\pages 4431--4436
\crossref{https://doi.org/10.1007/s10958-007-0281-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547591845}
Linking options:
  • https://www.mathnet.ru/eng/fpm845
  • https://www.mathnet.ru/eng/fpm/v11/i4/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024