Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 3, Pages 139–154 (Mi fpm837)  

This article is cited in 4 scientific papers (total in 4 papers)

Inversion of matrices over a pseudocomplemented lattice

E. E. Marenich, V. G. Kumarov

Murmansk State Pedagogical University
Full-text PDF (179 kB) Citations (4)
References:
Abstract: We compute the greatest solutions of systems of linear equations over a lattice $(P,\leq)$. We also present some applications of the obtained results to lattice matrix theory. Let $(P,\leq)$ be a pseudocomplemented lattice with $\tilde0$ and $\tilde1$ and let $A=\|a_{ij}\|_{n\times n}$, where $a_{ij}\in P$ for $i,j=1,\dots,n$. Let $A^*=\|a'_{ij}\|_{n\times n}$ and $a'_{ij}=\bigwedge\limits_{\substack{r=1\\ r\ne j}}^na_{ri}^*$ for $i,j=1,\dots,n$, where $a^*$ is the pseudocomplement of $a\in P$ in $(P,\leq)$. A matrix $A$ has a right inverse over $(P,\leq)$ if and only if $A\cdot A^*=E$ over $(P,\leq)$. If $A$ has a right inverse over $(P,\leq)$, then $A^*$ is the greatest right inverse of $A$ over $(P,\leq)$. The matrix $A$ has a right inverse over $(P,\leq)$ if and only if $A$ is a column orthogonal over $(P,\leq)$. The matrix $D=A\cdot A^*$ is the greatest diagonal such that $A$ is a left divisor of $D$ over $(P,\leq)$. Invertible matrices over a distributive lattice $(P,\leq)$ form the general linear group $\mathrm{GL}_n (P,\leq)$ under multiplication. Let $(P,\leq)$ be a finite distributive lattice and let $k$ be the number of components of the covering graph $\Gamma(\operatorname{join}(P,\leq)-\{\tilde0\},\leq)$, where $\operatorname{join}(P,\leq)$ is the set of join irreducible elements of $(P,\leq)$. Then $\mathrm{GL}_n(P,\leq)\cong S_n^k$. We give some further results concerning inversion of matrices over a pseudocomplemented lattice.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 144, Issue 2, Pages 3968–3979
DOI: https://doi.org/10.1007/s10958-007-0250-y
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: E. E. Marenich, V. G. Kumarov, “Inversion of matrices over a pseudocomplemented lattice”, Fundam. Prikl. Mat., 11:3 (2005), 139–154; J. Math. Sci., 144:2 (2007), 3968–3979
Citation in format AMSBIB
\Bibitem{MarKum05}
\by E.~E.~Marenich, V.~G.~Kumarov
\paper Inversion of matrices over a~pseudocomplemented lattice
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 3
\pages 139--154
\mathnet{http://mi.mathnet.ru/fpm837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2176685}
\zmath{https://zbmath.org/?q=an:1104.06005}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 144
\issue 2
\pages 3968--3979
\crossref{https://doi.org/10.1007/s10958-007-0250-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34250161769}
Linking options:
  • https://www.mathnet.ru/eng/fpm837
  • https://www.mathnet.ru/eng/fpm/v11/i3/p139
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:536
    Full-text PDF :133
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024