Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 3, Pages 57–78 (Mi fpm828)  

This article is cited in 24 scientific papers (total in 25 papers)

Zinbiel algebras under $q$-commutator

A. S. Dzhumadil'daev

Kazakh-British Technical University
References:
Abstract: An algebra with the identity $t_1(t_2t_3)=(t_1t_2+t_2t_1)t_3$ is called Zinbiel. For example, $\mathbb C[x]$ under multiplication $a\circ b=b\int\limits_0^xa\,dx $ is Zinbiel. Let $a\circ_q b=a\circ b+q\,b\circ a$ be a $q$-commutator, where $q\in\mathbb C$. We prove that for any Zinbiel algebra $A$ the corresponding algebra under commutator $A^{(-1)}=(A,\circ_{-1})$ satisfies the identities $t_1t_2=-t_2t_1$ and $(t_1t_2)(t_3t_4)+(t_1t_4)(t_3t_2)= \operatorname{jac}(t_1,t_2,t_3)t_4+\operatorname{jac}(t_1,t_4,t_3)t_2$, where $\operatorname{jac}(t_1,t_2,t_3)=(t_1t_2)t_3+(t_2t_3)t_1+(t_3t_1)t_2$. We find basic identities for $q$-Zinbiel algebras and prove that they form varieties equivalent to the variety of Zinbiel algebras if $q^2\ne1$.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 144, Issue 2, Pages 3909–3925
DOI: https://doi.org/10.1007/s10958-007-0244-9
Bibliographic databases:
UDC: 512.552
Language: Russian
Citation: A. S. Dzhumadil'daev, “Zinbiel algebras under $q$-commutator”, Fundam. Prikl. Mat., 11:3 (2005), 57–78; J. Math. Sci., 144:2 (2007), 3909–3925
Citation in format AMSBIB
\Bibitem{Dzh05}
\by A.~S.~Dzhumadil'daev
\paper Zinbiel algebras under $q$-commutator
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 3
\pages 57--78
\mathnet{http://mi.mathnet.ru/fpm828}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2176680}
\zmath{https://zbmath.org/?q=an:1119.17001}
\elib{https://elibrary.ru/item.asp?id=9027763}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 144
\issue 2
\pages 3909--3925
\crossref{https://doi.org/10.1007/s10958-007-0244-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34250219574}
Linking options:
  • https://www.mathnet.ru/eng/fpm828
  • https://www.mathnet.ru/eng/fpm/v11/i3/p57
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :171
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024