Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2005, Volume 11, Issue 2, Pages 45–49 (Mi fpm824)  

On the wedge product and coprime coalgebras

I. E. Wijayanti

Heinrich-Heine-Universität Düsseldorf
References:
Abstract: The wedge product of subcoalgebras of a coalgebra can be used to define coprime coalgebras. On the other hand, coprime elements in the big lattice of preradicals in module categories also lead to the definition of coprime modules. Considering a coalgebra $C$ as a module over its dual algebra $C^{*}$, this yields another notion of coprimeness for coalgebras. Under special conditions, the two definitions coincide.
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 142, Issue 2, Pages 1895–1898
DOI: https://doi.org/10.1007/s10958-007-0096-3
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: I. E. Wijayanti, “On the wedge product and coprime coalgebras”, Fundam. Prikl. Mat., 11:2 (2005), 45–49; J. Math. Sci., 142:2 (2007), 1895–1898
Citation in format AMSBIB
\Bibitem{Wij05}
\by I.~E.~Wijayanti
\paper On the wedge product and coprime coalgebras
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 2
\pages 45--49
\mathnet{http://mi.mathnet.ru/fpm824}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2157928}
\zmath{https://zbmath.org/?q=an:1073.16035}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 142
\issue 2
\pages 1895--1898
\crossref{https://doi.org/10.1007/s10958-007-0096-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947387579}
Linking options:
  • https://www.mathnet.ru/eng/fpm824
  • https://www.mathnet.ru/eng/fpm/v11/i2/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024